Targets in Mechanical Ventilation for ARDS

  • B. P. Kavanagh
Part of the Update in Intensive Care Medicine book series (UICMSOFT)


Mechanical Ventilation Acute Lung Injury Airway Pressure Acute Respiratory Distress Syndrome Respir Crit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mao C, Wong DT, Slutsky AS, Kavanagh BP (1999)Aquantitative assessment of how Canadian intensivists believe they utilize oxygen in the intensive care unit. Crit Care Med 27:2806–2811PubMedGoogle Scholar
  2. 2.
    Kavanagh BP (1998) Goals and concerns for oxygenation in acute respiratory distress syndrome. Curr Opin Crit Care 4:16–20Google Scholar
  3. 3.
    Bernard GR, Artigas A, Brigham KL, et al (1994) The American-European consensus conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med 149:818–824PubMedGoogle Scholar
  4. 4.
    Phang PT, Cunningham KF, Ronco JJ, Wiggs BR, Russell JA (1994) Mathematical coupling explains dependence of oxygen consumption on oxygen delivery in ARDS. Am J Respir Crit Care Med 150:318–323PubMedGoogle Scholar
  5. 5.
    Maldonado A, Bauer TT, Ferrer M, et al (2000) Capnometric recirculation gas tonometry and weaning from mechanical ventilation. Am J Respir Crit Care Med 161:171–176PubMedGoogle Scholar
  6. 6.
    Obrig H, Villinger A (2003) Beyond the visible-imaging the human brain with light. J Cereb Blood Flow Metab 23:1–18PubMedGoogle Scholar
  7. 7.
    Schlosser RL, Voigt B, von Loewenich V (2000) [Cerebral perfusion in newborn infants treated with high-frequency oscillation ventilation]. Klin Padiatr 212:308–311PubMedGoogle Scholar
  8. 8.
    Conference C (1996) Tissue hypoxia. How to detect, how to correct, how to prevent. Am J Respir Crit Care Med 154:1573–1578Google Scholar
  9. 9.
    Wung JT, James LS, Kilchevsky E, James E (1985) Management of infants with severe respiratory failure and persistence of the fetal circulation, without hyperventilation. Pediatrics 76:488–494PubMedGoogle Scholar
  10. 10.
    Hickling KG, Henderson SJ, Jackson R (1990) Low mortality associated with low volume pressure limited ventilation with permissive hypercapnia in severe adult respiratory distress syndrome. Intensive Care Med 16:372–377PubMedGoogle Scholar
  11. 11.
    Hickling KG, Walsh J, Henderson S, Jackson R (1994) Low mortality rate in adult respiratory distress syndrome using low-volume, pressure-limited ventilation with permissive hypercapnia: a prospective study. Crit Care Med 22:1568–1578PubMedCrossRefGoogle Scholar
  12. 12.
    Bidani A, Tzouanakis AE, Cardenas VJ, Jr., Zwischenberger JB (1994) Permissive hypercapnia in acute respiratory failure. JAMA 272:957–962CrossRefPubMedGoogle Scholar
  13. 13.
    Feihl F, Perret C (1994) Permissive hypercapnia. How permissive should we be? Am J Respir Crit Care Med 150:1722–1737PubMedGoogle Scholar
  14. 14.
    The Acute Respiratory Distress Syndrome Network (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342:1301–1308CrossRefGoogle Scholar
  15. 15.
    Laffey JG, Kavanagh BP (1999) Carbon dioxide and the critically ill-too little of a good thing? Lancet 354:1283–1286CrossRefPubMedGoogle Scholar
  16. 16.
    Laffey JG, Kavanagh BP (2000) Biological effects of hypercapnia. Intensive Care Med 26:133–138CrossRefPubMedGoogle Scholar
  17. 17.
    Amato MB, Barbas CS, Medeiros DM, et al (1998) Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 338:347–354CrossRefPubMedGoogle Scholar
  18. 18.
    Ranieri VM, Suter PM, Tortorella C, et al (1999) Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome: a randomized controlled trial. JAMA 282:54–61CrossRefPubMedGoogle Scholar
  19. 19.
    Stewart TE, Meade MO, Cook DJ, et al (1998) Evaluation of a ventilation strategy to prevent barotrauma in patients at high risk for acute respiratory distress syndrome. Pressure-and Volume-Limited ventilatory strategy. N Engl J Med 338:355–361CrossRefPubMedGoogle Scholar
  20. 20.
    Shibata K, Cregg N, Engelberts D, Takeuchi A, Fedorko L, Kavanagh BP (1998) Hypercapnic acidosis may attenuate acute lung injury by inhibition of endogenous xanthine oxidase. Am J Respir Crit Care Med 158:1578–1584PubMedGoogle Scholar
  21. 21.
    Broccard AF, Hotchkiss JR, Vannay C, et al (2001) Protective effects of hypercapnic acidosis on ventilator-induced lung injury. Am J Respir Crit Care Med 164:802–806PubMedGoogle Scholar
  22. 22.
    Sinclair SE, Kregenow DA, Lamm WJ, Starr IR, Chi EY, Hlastala MP (2002) Hypercapnic acidosis is protective in an in vivo model of ventilator-induced lung injury. Am J Respir Crit Care Med 166:403–408CrossRefPubMedGoogle Scholar
  23. 23.
    Laffey JG, Tanaka M, Engelberts D, et al (2000) Therapeutic hypercapnia reduces pulmonary and systemic injury following In vivo lung reperfusion. Am J Respir Crit Care Med 162:2287–2294PubMedGoogle Scholar
  24. 24.
    Vannucci RC, Towfighi J, Heitjan DF, Brucklacher RM (1995) Carbon dioxide protects the perinatal brain from hypoxic-ischemic damage: an experimental study in the immature rat. Pediatrics 95:868–874PubMedGoogle Scholar
  25. 25.
    Nomura F, Aoki M, Forbess JM, Mayer JE (1994) Effects of hypercarbic acidotic reperfusion on recovery of myocardial function after cardioplegic ischemia in neonatal lambs. Circulation 90:321–327Google Scholar
  26. 26.
    du Plessis AJ, Jonas RA, Wypij D, et al (1997) Perioperative effects of alpha-stat versus pH-stat strategies for deep hypothermic cardiopulmonary bypass in infants. J Thorac Cardiovasc Surg 114:991–1000PubMedGoogle Scholar
  27. 27.
    Holmes JM, Leske DA, Zhang S (1997) The effect of raised inspired carbon dioxide on normal retinal vascular development in the neonatal rat. Curr Eye Res 16:78–81PubMedGoogle Scholar
  28. 28.
    Zhu S, Basiouny KF, Crow JP, Matalon S (2000) Carbon dioxide enhances nitration of surfactant protein A by activated alveolar macrophages. Am J Physiol 278:L1025–L1031Google Scholar
  29. 29.
    Lang JD JR, Chumley P, Eiserich JP, et al (2000) Hypercapnia induces injury to alveolar epithelial cells via a nitric oxide-dependent pathway. Am J Physiol 279:L994–1002Google Scholar
  30. 30.
    Gole MD, Souza JM, Choi I, et al (2000) Plasma proteins modified by tyrosine nitration in acute respiratory distress syndrome. Am J Physiol 278:L961–967Google Scholar
  31. 31.
    Laffey JG, Engelberts D, Kavanagh BP (2000) Buffering hypercapnic acidosis worsens acute lung injury. Am J Respir Crit Care Med 161:141–146PubMedGoogle Scholar
  32. 32.
    Hood VL, Tannen RL (1998) Protection of acid-base balance by pH regulation of acid production. N Engl J Med 339:819–826CrossRefPubMedGoogle Scholar
  33. 33.
    Abu Romeh S, Tannen RL (1986) Amelioration of hypoxia-induced lactic acidosis by superimposed hypercapnea or hydrochloride acid infusion. Am J Physiol 250:F702–F709PubMedGoogle Scholar
  34. 34.
    Laffey JG, Kavanagh BP (2002) Hypocapnia. N Engl J Med 347:43–53CrossRefPubMedGoogle Scholar
  35. 35.
    McIntyre RW, Laws AK, Ramachandran PR (1969) Positive expiratory pressure plateau: improved gas exchange during mechanical ventilation. Can Anaesth Soc J 16:477–486PubMedGoogle Scholar
  36. 36.
    Suter PM, Fairley B, Isenberg MD (1975) Optimum end-expiratory airway pressure in patients with acute pulmonary failure. N Engl J Med 292:284–289PubMedCrossRefGoogle Scholar
  37. 37.
    Pepe PE, Hudson LD, Carrico CJ (1984) Early application of positive end-expiratory pressure in patients at risk for the adult respiratory-distress syndrome. N Engl J Med 311:281–286PubMedCrossRefGoogle Scholar
  38. 38.
    NIH (2002) ALVEOLI study: at Scholar
  39. 39.
    Gattinoni L, Mascheroni D, Torresin A, et al (1986) Morphological response to positive end expiratory pressure in acute respiratory failure. Computerized tomography study. Intensive Care Med 12:137–142CrossRefPubMedGoogle Scholar
  40. 40.
    Rouby JJ, Lu Q, Goldstein I (2002) Selecting the right level of positive end-expiratory pressure in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 165:1182–1186PubMedGoogle Scholar
  41. 41.
    Gattinoni L, Pelosi P, Suter PM, Pedoto A, Vercesi P, Lissoni A (1998) Acute respiratory distress syndrome caused by pulmonary and extrapulmonary disease. Different syndromes? Am J Respir Crit Care Med 158:3–11PubMedGoogle Scholar
  42. 42.
    Parker JC, Hernandez LA, Peevy KJ (1993) Mechanisms of ventilator-induced lung injury. Crit Care Med 21:131–143PubMedGoogle Scholar
  43. 43.
    Dreyfuss D, Saumon G (1998) Ventilator-induced lung injury: lessons from experimental studies. Am J Respir Crit Care Med 157:294–323PubMedGoogle Scholar
  44. 44.
    Grasso S, Mascia L, Del Turco M, et al (2002) Effects of recruiting maneuvers in patients with acute respiratory distress syndrome ventilated with protective ventilatory strategy. Anesthesiology 96:795–802CrossRefPubMedGoogle Scholar
  45. 45.
    Suzuki H, Papazoglou K, Bryan AC (1992) Relationship between PaO2 and lung volume during high frequency oscillatory ventilation. Acta Paediatr Jpn 34:494–500PubMedGoogle Scholar
  46. 46.
    Rimensberger PC, Pristine G, Mullen BM, Cox PN, Slutsky AS (1999) Lung recruitment during small tidal volume ventilation allows minimal positive end-expiratory pressure without augmenting lung injury. Crit Care Med 27:1940–1945PubMedGoogle Scholar
  47. 47.
    Brower RG, Shanholtz CB, Fessler HE, et al (1999) Prospective, randomized, controlled clinical trial comparing traditional versus reduced tidal volume ventilation in acute respiratory distress syndrome patients. Crit Care Med 27:1492–1498PubMedGoogle Scholar
  48. 48.
    Brochard L, Roudot-Thoraval F, Roupie E, et al (1998) Tidal volume reduction for prevention of ventilator-induced lung injury in acute respiratory distress syndrome. The Multicenter Trail Group on Tidal Volume reduction in ARDS. Am J Respir Crit Care Med 158:1831–1838PubMedGoogle Scholar
  49. 49.
    Eichacker PQ, Gerstenberger EP, Banks SM, Cui X, Natanson C (2002) Meta-analysis of acute lung injury and acute respiratory distress syndrome trials testing low tidal volumes. Am J Respir Crit Care Med 166:1510–1514PubMedGoogle Scholar
  50. 50.
    Brower RG, Matthay M, Schoenfeld D (2002) Meta-analysis of acute lung injury and acute respiratory distress syndrome trials (letter). Am J Respir Crit Care Med 166:1515–1517PubMedGoogle Scholar
  51. 51.
    Bersten AD, Edibam C, Hunt T, Moran J (2002) Incidence and mortality of acute lung injury and the acute respiratory distress syndrome in three Australian States. Am J Respir Crit Care Med 165:443–448PubMedGoogle Scholar
  52. 52.
    Edmonds JF, Berry E, Wyllie JH (1969) Release of prostaglandins caused by distension of the lungs. Br J Surg 56:622–623PubMedGoogle Scholar
  53. 53.
    Berry EM, Edmonds JF, Wyllie H (1971) Release of prostaglandin E2 and unidentified factors from ventilated lungs. Br J Surg 58:189–192PubMedGoogle Scholar
  54. 54.
    Imai Y, Kawano T, Miyasaka K, Takata M, Imai T, Okuyama K (1994) Inflammatory chemical mediators during conventional ventilation and during high frequency oscillatory ventilation. Am J Respir Crit Care Med 150:1550–1554PubMedGoogle Scholar
  55. 55.
    Chiumello D, Pristine G, Slutsky AS (1999) Mechanical ventilation affects local and systemic cytokines in an animal model of acute respiratory distress syndrome. Am J Respir Crit Care Med 160:109–116PubMedGoogle Scholar
  56. 56.
    Murphy DB, Cregg N, Tremblay L, Engelberts D, Laffey JG, Slutsky AS, Romaschin A, Kavanagh BP (2000) Adverse ventilatory strategy causes pulmonary-to-systemic translocation of endotoxin. Am J Respir Crit Care Med 162:27–33PubMedGoogle Scholar
  57. 57.
    Nahum A, Hoyt J, Schmitz L, Moody J, Shapiro R, Marini JJ (1997) Effect of mechanical ventilation strategy on dissemination of intratracheally instilled Escherichia coli in dogs. Crit Care Med 25:1733–1743PubMedGoogle Scholar
  58. 58.
    Ricard JD, Dreyfuss D, Saumon G (2001) Production of inflammatory cytokines in ventilator-induced lung injury: a reappraisal. Am J Respir Crit Care Med 163:1176–1180PubMedGoogle Scholar
  59. 59.
    Copland I, Engelberts D, Kavanagh BP, Post M(2001) High stretch ventilation causes cytokine gene activation before injury. Am J Respir Crit Care Med 161:A164 (abst)Google Scholar
  60. 60.
    Montgomery AB, Stager MA, Carrico CJ, Hudson LD (1985) Causes of mortality in patients with the adult respiratory distress syndrome. Am Rev Respir Dis 132:485–489PubMedGoogle Scholar
  61. 61.
    Weg JG, Anzueto A, Balk RA, et al (1998) The relation of pneumothorax and other air leaks to mortality in the acute respiratory distress syndrome. N Engl J Med 338:341–346CrossRefPubMedGoogle Scholar
  62. 62.
    Herridge MS, Cheung AM, Tansey CM, et al (2003) One-year outcomes in survivors of the acute respiratory distress syndrome. N Engl J Med 348:683–693CrossRefPubMedGoogle Scholar
  63. 63.
    Nelson BJ, Weinert CR, Bury CL, Marinelli WA, Gross CR (2000) Intensive care unit drug use and subsequent quality of life in acute lung injury patients. Crit Care Med 28:3626–3630PubMedGoogle Scholar
  64. 64.
    Orme J Jr, Romney JS, Hopkins RO, et al (2003) Pulmonary function and health-related quality of life in survivors of acute respiratory distress syndrome. Am J Respir Crit Care Med 167:690–694CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • B. P. Kavanagh

There are no affiliations available

Personalised recommendations