Systemic Effects of Mechanical Ventilation

  • Y. Imai
  • A. S. Slutsky
Conference paper
Part of the Update in Intensive Care Medicine book series (UICMSOFT)


Mechanical Ventilation Lung Injury Acute Lung Injury Acute Respiratory Distress Syndrome Respir Crit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Esteban A, Anzueto A, Frutos F, et al (2002) Characteristics and outcomes in adult patients receiving mechanical ventilation: a 28-day international study. JAMA 287:345–355CrossRefPubMedGoogle Scholar
  2. 2.
    Slutsky AS, Tremblay LN (1998) Multiple system organ failure. Is mechanical ventilation a contributing factor? Am J Respir Crit Care Med 157:1721–1725PubMedGoogle Scholar
  3. 3.
    Grembowicz KP, Sprague D, McNeil PL (1999) Temporary disruption of the plasma membrane is required for c-fos expression in response to mechanical stress. Mol Biol Cell 10:1247–1257PubMedGoogle Scholar
  4. 4.
    Mourgeon E, Isowa N, Keshavjee S, Zhang X, Slutsky AS, Liu M (2000) Mechanical stretch stimulates macrophage inflammatory protein-2 secretion from fetal rat lung cells. Am J Physiol 279:L699–L706Google Scholar
  5. 5.
    Pugin J, Dunn I, Jolliet P, et al (1998) Activation of human macrophages by mechanical ventilation in vitro. Am J Physiol 275:L1040–L1050PubMedGoogle Scholar
  6. 6.
    Quinn D, Tager A, Joseph PM, Bonventre JV, Force T, Hales CA (1999) Stretch-induced mitogen-activated protein kinase activation and interleukin-8 production in type II alveolar cells. Chest 116:89S–90SCrossRefPubMedGoogle Scholar
  7. 7.
    Vlahakis NE, Schroeder MA, Limper AH, Hubmayr RD (1999) Stretch induces cytokine release by alveolar epithelial cells in vitro. Am J Physiol 277:L167–L173PubMedGoogle Scholar
  8. 8.
    von Bethmann AN, Brasch F, Nusing R, et al (1998) Hyperventilation induces release of cytokines from perfused mouse lung. Am J Respir Crit Care Med 157:263–272Google Scholar
  9. 9.
    Tremblay L, Valenza F, Ribeiro SP, Li J, Slutsky AS (1997) Injurious ventilatory strategies increase cytokines and c-fos m-RNA expression in an isolated rat lung model. J Clin Invest 99:944–952PubMedCrossRefGoogle Scholar
  10. 10.
    Chiumello D, Pristine G, Slutsky AS (1999) Mechanical ventilation affects local and systemic cytokines in an animal model of acute respiratory distress syndrome. Am J Respir Crit Care Med 160:109–116PubMedGoogle Scholar
  11. 11.
    Ranieri VM, Suter PM, Tortorella C, et al (1999) Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome: a randomized controlled trial. JAMA 282:54–61CrossRefPubMedGoogle Scholar
  12. 12.
    The Acute Respiratory Distress Syndrome Network (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342:1301–1308CrossRefGoogle Scholar
  13. 13.
    Ranieri VM, Giunta F, Suter PM, Slutsky AS (2000) Mechanical ventilation as a mediator of multisystem organ failure in acute respiratory distress syndrome. JAMA 284:43–44CrossRefPubMedGoogle Scholar
  14. 14.
    Amato MB, Barbas CS, Medeiros DM, et al (1998) Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 338:347–354CrossRefPubMedGoogle Scholar
  15. 15.
    Carrico CJ, Meakins JL, Marshall JC, Fry D, Maier RV (1986) Multiple-organ-failure syndrome. Arch Surg 121:196–208PubMedGoogle Scholar
  16. 16.
    Le Gall JR, Klar J, Lemeshow S, et al (1996) The Logistic Organ Dysfunction system. A new way to assess organ dysfunction in the intensive care unit. ICU Scoring Group. JAMA 276:802–810PubMedGoogle Scholar
  17. 17.
    De Backer D (2000) The effects of positive end-expiratory pressure on the splanchnic circulation. Intensive Care Med 26:361–363PubMedGoogle Scholar
  18. 18.
    Pinsky MR (2002) Recent advances in the clinical application of heart-lung interactions. Curr Opin Crit Care 8:26–31PubMedGoogle Scholar
  19. 19.
    Russell JA, Phang PT (1994) The oxygen delivery/consumption controversy. Approaches to management of the critically ill. Am J Respir Crit Care Med 149:533–537PubMedGoogle Scholar
  20. 20.
    Fessler HE, Brower RG, Wise RA, Permutt S (1991) Effects of positive end-expiratory pressure on the gradient for venous return. Am Rev Respir Dis 143:19–24PubMedGoogle Scholar
  21. 21.
    Jardin F, Farcot JC, Boisante L, Curien N, Margairaz A, Bourdarias JP (1981) Influence of positive end-expiratory pressure on left ventricular performance. N Engl J Med 304:387–392PubMedCrossRefGoogle Scholar
  22. 22.
    Robotham JL, Lixfeld W, Holland L, et al (1980) The effects of positive end-expiratory pressure on right and left ventricular performance. Am Rev Respir Dis 121:677–683PubMedGoogle Scholar
  23. 23.
    Brienza N, Revelly JP, Ayuse T, Robotham JL (1995) Effects of PEEP on liver arterial and venous blood flows. Am J Respir Crit Care Med 152:504–510PubMedGoogle Scholar
  24. 24.
    Dorinsky PM, Hamlin RL, Gadek JE (1987) Alterations in regional blood flow during positive end-expiratory pressure ventilation. Crit Care Med 15:106–113PubMedGoogle Scholar
  25. 25.
    Matuschak GM, Pinsky MR, Rogers RM (1987) Effects of positive end-expiratory pressure on hepatic blood flow and performance. J Appl Physiol 62:1377–1383PubMedGoogle Scholar
  26. 26.
    Sha M, Saito Y, Yokoyama K, Sawa T, Amaha K (1987) Effects of continuous positive-pressure ventilation on hepatic blood flow and intrahepatic oxygen delivery in dogs. Crit Care Med 15:1040–1043PubMedGoogle Scholar
  27. 27.
    Aneman A, Eisenhofer G, Fandriks L, et al (1999) Splanchnic circulation and regional sympathetic outflow during peroperative PEEP ventilation in humans. Br J Anaesth 82:838–842PubMedGoogle Scholar
  28. 28.
    Trager K, Radermacher P, Georgieff M (1996) PEEP and hepatic metabolic performance in septic shock. Intensive Care Med 22:1274–1275PubMedGoogle Scholar
  29. 29.
    Kiefer P, Nunes S, Kosonen P, Takala J (2000) Effect of positive end-expiratory pressure on splanchnic perfusion in acute lung injury. Intensive Care Med 26:376–383CrossRefPubMedGoogle Scholar
  30. 30.
    Fournell A, Scheeren TW, Schwarte LA (1997) Oxygenation of the intestinal mucosa in anaesthetized dogs is attenuated by intermittent positive pressure ventilation (IPPV) with positive end-expiratory pressure (PEEP). Adv Exp Med Biol 428:385–389PubMedGoogle Scholar
  31. 31.
    Seeman-Lodding H, Haggmark S, Jern C, et al (1999) Systemic levels and preportal organ release of tissue-type plasminogen activator are enhanced by PEEP in the pig. Acta Anaesthesiol Scand 43:623–633PubMedGoogle Scholar
  32. 32.
    Kiiski R, Takala J, Kari A, Milic-Emili J (1992) Effect of tidal volume on gas exchange and oxygen transport in the adult respiratory distress syndrome. Am Rev Respir Dis 146:1131–1135PubMedGoogle Scholar
  33. 33.
    Thorens JB, Jolliet P, Ritz M, Chevrolet JC (1996) Effects of rapid permissive hypercapnia on hemodynamics, gas exchange, and oxygen transport and consumption during mechanical ventilation for the acute respiratory distress syndrome. Intensive Care Med 22:182–191CrossRefPubMedGoogle Scholar
  34. 34.
    Brofman JD, Leff AR, Munoz NM, Kirchhoff C, White SR (1990) Sympathetic secretory response to hypercapnic acidosis in swine. J Appl Physiol 69:710–717PubMedGoogle Scholar
  35. 35.
    Rose CE Jr, Althaus JA, Kaiser DL, Miller ED, Carey RM (1983) Acute hypoxemia and hypercapnia: increase in plasma catecholamines in conscious dogs. Am J Physiol 245:H924–H929PubMedGoogle Scholar
  36. 36.
    Cardenas VJ Jr, Zwischenberger JB, Tao W, et al (1996) Correction of blood pH attenuates changes in hemodynamics and organ blood flow during permissive hypercapnia. Crit Care Med 24:827–834PubMedGoogle Scholar
  37. 37.
    Sitbon P, Teboul JL, Duranteau J, Anguel N, Richard C, Samii K (2001) Effects of tidal volume reduction in acute respiratory distress syndrome on gastric mucosal perfusion. Intensive Care Med 27:911–915PubMedGoogle Scholar
  38. 38.
    Dos Santos CC, Slutsky AS (2000) Invited review: mechanisms of ventilator-induced lung injury: a perspective. J Appl Physiol 89:1645–1655PubMedGoogle Scholar
  39. 39.
    Fisher AB, Chien S, Barakat AI, Nerem RM (2001) Endothelial cellular response to altered shear stress. Am J Physiol 281:L529–L533Google Scholar
  40. 40.
    Liu M, Post M (2000) Invited review: mechanochemical signal transduction in the fetal lung. J Appl Physiol 89:2078–2084PubMedGoogle Scholar
  41. 41.
    Uhlig S (2002) Ventilation-induced lung injury and mechanotransduction: stretching it too far? Am J Physiol 282:L892–L896Google Scholar
  42. 42.
    Waters CM, Sporn PH, Liu M, Fredberg JJ (2002) Cellular biomechanics in the lung. Am J Physiol 283:L503–L509Google Scholar
  43. 43.
    Vlahakis NE, Hubmayr RD (2000) Invited review: plasma membrane stress failure in alveolar epithelial cells. J Appl Physiol 89:2490–2496PubMedGoogle Scholar
  44. 44.
    Dunn I, Pugin J (1999) Mechanical ventilation of various human lung cells in vitro: identification of the macrophage as the main producer of inflammatory mediators. Chest 116:95S–97SCrossRefPubMedGoogle Scholar
  45. 45.
    Gan L, Doroudi R, Hagg U, Johansson A, Selin-Sjogren L, Jern S (2000) Differential immediate-early gene responses to shear stress and intraluminal pressure in intact human conduit vessels. FEBS Lett 477:89–94CrossRefPubMedGoogle Scholar
  46. 46.
    Gan L, Miocic M, Doroudi R, Selin-Sjogren L, Jern S (2000) Distinct regulation of vascular endothelial growth factor in intact human conduit vessels exposed to laminar fluid shear stress and pressure. Biochem Biophys Res Commun 272:490–496CrossRefPubMedGoogle Scholar
  47. 47.
    Haitsma JJ, Uhlig S, Goggel R, Verbrugge SJ, Lachmann U, Lachmann B (2000) Ventilator-induced lung injury leads to loss of alveolar and systemic compartmentalization of tumor necrosis factor-alpha. Intensive Care Med 26:1515–1522CrossRefPubMedGoogle Scholar
  48. 48.
    Imai Y, Kawano T, Iwamoto S, Nakagawa S, Takata M, Miyasaka K (1999) Intratracheal anti-tumor necrosis factor-alpha antibody attenuates ventilator-induced lung injury in rabbits. J Appl Physiol 87:510–515PubMedGoogle Scholar
  49. 49.
    Narimanbekov IO, Rozycki HJ (1995) Effect of IL-1 blockade on inflammatory manifestations of acute ventilator-induced lung injury in a rabbit model. Exp Lung Res 21:239–254PubMedCrossRefGoogle Scholar
  50. 50.
    Held HD, Boettcher S, Hamann L, Uhlig S (2001) Ventilation-induced chemokine and cytokine release is associated with activation of nuclear factor-kappa B and is blocked by steroids. Am J Respir Crit Care Med 163:711–716PubMedGoogle Scholar
  51. 51.
    Tutor JD, Mason CM, Dobard E, Beckerman RC, Summer WR, Nelson S (1994) Loss of compartmentalization of alveolar tumor necrosis factor after lung injury. Am J Respir Crit Care Med 149:1107–1111PubMedGoogle Scholar
  52. 52.
    Kurahashi K, Kajikawa O, Sawa T, et al (1999) Pathogenesis of septic shock in Pseudomonas aeruginosa pneumonia. J Clin Invest 104:743–750PubMedCrossRefGoogle Scholar
  53. 53.
    Greene KE, Wright JR, Steinberg KP, et al (1999) Serial changes in surfactant-associated proteins in lung and serum before and after onset of ARDS. Am J Respir Crit Care Med 160:1843–1850PubMedGoogle Scholar
  54. 54.
    Doyle IR, Bersten AD, Nicholas TE (1997) Surfactant proteins-A and-B are elevated in plasma of patients with acute respiratory failure. Am J Respir Crit Care Med 156:1217–1229PubMedGoogle Scholar
  55. 55.
    Nahum A, Hoyt J, Schmitz L, Moody J, Shapiro R, Marini JJ (1997) Effect of mechanical ventilation strategy on dissemination of intratracheally instilled Escherichia coli in dogs. Crit Care Med 25:1733–1743PubMedGoogle Scholar
  56. 56.
    Verbrugge SJ, Sorm V, van ’t Vee A, Mouton JW, Gommers D, Lachmann B (1998) Lung overinflation without positive end-expiratory pressure promotes bacteremia after experimental Klebsiella pneumoniae inoculation. Intensive Care Med. 24:172–177.CrossRefPubMedGoogle Scholar
  57. 57.
    Murphy DB, Cregg N, Tremblay L, et al (2000) Adverse ventilatory strategy causes pulmonary-to-systemic translocation of endotoxin. Am J Respir Crit Care Med 162:27–33PubMedGoogle Scholar
  58. 58.
    Douzinas EE, Tsidemiadou PD, Pitaridis MT, et al (1997) The regional production of cytokines and lactate in sepsis-related multiple organ failure. Am J Respir Crit Care Med 155:53–59PubMedGoogle Scholar
  59. 59.
    Stuber F, Wrigge H, Schroeder S, et al (2002) Kinetic and reversibility of mechanical ventilation-associated pulmonary and systemic inflammatory response in patients with acute lung injury. Intensive Care Med 28:834–841PubMedGoogle Scholar
  60. 60.
    Wrigge H, Zinserling J, Stuber F, et al (2000) Effects of mechanical ventilation on release of cytokines into systemic circulation in patients with normal pulmonary function. Anesthesiology 93:1413–1417PubMedGoogle Scholar
  61. 61.
    Papathanassoglou ED, Moynihan JA, Ackerman MH (2000) Does programmed cell death (apoptosis) play a role in the development of multiple organ dysfunction in critically ill patients? a review and a theoretical framework. Crit Care Med 28:537–549PubMedGoogle Scholar
  62. 62.
    Hiramatsu M, Hotchkiss RS, Karl IE, Buchman TG (1997) Cecal ligation and puncture (CLP) induces apoptosis in thymus, spleen, lung, and gut by an endotoxin and TNF-independent pathway. Shock 7:247–253PubMedGoogle Scholar
  63. 63.
    Hotchkiss RS, Swanson PE, Cobb JP, Jacobson A, Buchman TG, Karl IE (1997) Apoptosis in lymphoid and parenchymal cells during sepsis: findings in normal and T-and B-cel-deficient mice. Crit Care Med 25:1298–1307PubMedGoogle Scholar
  64. 64.
    Hotchkiss RS, Swanson PE, Freeman BD, et al (1999) Apoptotic cell death in patients with sepsis, shock, and multiple organ dysfunction. Crit Care Med 27:1230–1251PubMedGoogle Scholar
  65. 65.
    Imai Y, Parodo J, Kajikawa O, et al (2003) Injurious mechanical ventilation and end-organ epithelial cell apoptosis and organ dysfunction in an experimental model of ARDS. JAMA 289:2104–2112CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Y. Imai
  • A. S. Slutsky

There are no affiliations available

Personalised recommendations