VILI: Physiological Evidence

  • J. D. Ricard
  • D. Dreyfuss
  • G. Saumon
Part of the Update in Intensive Care Medicine book series (UICMSOFT)


Respir Crit Functional Residual Capacity Acute Respiratory Distress Syndrome Patient High Frequency Oscillatory Ventilation Hypercapnic Acidosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pingleton SK (1988) Complications of acute respiratory failure. Am Rev Respir Dis 137:1463–1493PubMedGoogle Scholar
  2. 2.
    Dreyfuss D, Saumon G (1998) Ventilator-induced lung injury: lessons from experimental studies. Am J Respir Crit Care Med 157:294–323PubMedGoogle Scholar
  3. 3.
    Amato MB, Barbas CS, Medeiros DM, et al (1998) Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 338:347–54CrossRefPubMedGoogle Scholar
  4. 4.
    Brochard L, Roudot-Thoraval F, Roupie E, et al (1998) Tidal volume reduction for prevention of ventilator-induced lung injury in acute respiratory distress syndrome. The Multicenter Trail Group on Tidal Volume reduction in ARDS. Am J Respir Crit Care Med 158:1831–1838PubMedGoogle Scholar
  5. 5.
    Stewart TE, Meade MO, Cook DJ, et al (1998) Evaluation of a ventilation strategy to prevent barotrauma in patients at high risk for acute respiratory distress syndrome. Pressure-and Volume-Limited Ventilation Strategy Group. N Engl J Med 338:355–61CrossRefPubMedGoogle Scholar
  6. 6.
    The Acute Respiratory Distress Syndrome Network (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342:1301–1308CrossRefGoogle Scholar
  7. 7.
    Eichacker PQ, Gerstenberger EP, Banks SM, Cui X, Natanson C (2002) A metaanalysis of ALI and ARDS trials testing low tidal volumes. Am J Respir Crit Care Med 166:1510–1514PubMedGoogle Scholar
  8. 8.
    Webb HH, Tierney DF (1974) Experimental pulmonary edema due to intermittentpositive pressure ventilation with high inflation pressures. Protection by postive end-expiratory pressure. Am Rev Respir Dis 110:556–565PubMedGoogle Scholar
  9. 9.
    Dreyfuss D, Basset G, Soler P, Saumon G (1985) Intermittent positive-pressure hyperventilation with high inflation pressures produces pulmonary microvascular injury in rats. Am Rev Respir Dis 132:880–884PubMedGoogle Scholar
  10. 10.
    Dreyfuss D, Soler P, Basset G, Saumon G (1988) High inflation pressure pulmonary edema. Respective effects of high airway pressure, high tidal volume, and positive end-expiratory pressure. Am Rev Respir Dis 137:1159–1164PubMedGoogle Scholar
  11. 11.
    Slutsky AS (1994) Consensus conference on mechanical ventilation-January 28–30, 1993 at Northbrook, Illinois, USA. Intensive Care Med 20:64–79CrossRefPubMedGoogle Scholar
  12. 12.
    Dreyfuss D, Saumon G (1992) Barotrauma is volutrauma, but which volume is the one responsible? Intensive Care Med 18:139–141CrossRefPubMedGoogle Scholar
  13. 13.
    Dreyfuss D, Soler P, Saumon G (1992) Spontaneous resolution of pulmonary edema caused by short periods of cyclic overinflation. J Appl Physiol 72:2081–2089PubMedGoogle Scholar
  14. 14.
    Hernandez LA, Peevy KJ, Moise AA, Parker JC (1989) Chest wall restriction limits high airway pressure-induced lung injury in young rabbits. J Appl Physiol 66:2364–2368PubMedGoogle Scholar
  15. 15.
    Carlton DP, Cummings JJ, Scheerer RG, Poulain FR, Bland RD (1990) Lung overexpansion increases pulmonary microvascular protein permeability in young lambs. J Appl Physiol 69:577–583PubMedGoogle Scholar
  16. 16.
    Peevy KJ, Hernandez LA, Moise AA, Parker JC (1990) Barotrauma and microvascular injury in lungs of nonadult rabbits: effect of ventilation pattern. Crit Care Med 18:634–637PubMedGoogle Scholar
  17. 17.
    Taskar V, John J, Evander E, Robertson B, Jonson B (1995) Healthy lungs tolerate repetitive collapse and reopening during short periods of mechanical ventilation. Acta Anaesthesiol Scand 39:370–376PubMedCrossRefGoogle Scholar
  18. 18.
    Bowton DL, Kong DL (1989) High tidal volume ventilation produces increased lung water in oleic acid-injured rabbit lungs. Crit Care Med 17:908–911PubMedGoogle Scholar
  19. 19.
    Hernandez LA, Coker PJ, May S, Thompson AL, Parker JC (1990) Mechanical ventilation increases microvascular permeability in oleic acid-injured lungs. J Appl Physiol 69:2057–2061PubMedGoogle Scholar
  20. 20.
    Coker PJ, Hernandez LA, Peevy KJ, Adkins K, Parker JC (1992) Increased sensitivity to mechanical ventilation after surfactant inactivation in young rabbit lungs. Crit Care Med 20:635–640PubMedGoogle Scholar
  21. 21.
    Dreyfuss D, Soler P, Saumon G (1995) Mechanical ventilation-induced pulmonary edema. Interaction with previous lung alterations. Am J Respir Crit Care Med 151:1568–1575PubMedGoogle Scholar
  22. 22.
    Huang YC, Weinmann GG, Mitzner W (1988) Effect of tidal volume and frequency on the temporal fall in compliance. J Appl Physiol 65:2040–2047PubMedGoogle Scholar
  23. 23.
    Ward HE, Nicholas TE (1992) Effect of artificial ventilation and anaesthesia on surfactant turnover in rats. Respir Physiol 87:115–129CrossRefPubMedGoogle Scholar
  24. 24.
    Tsang JY, Emery MJ, Hlastala MP (1997) Ventilation inhomogeneity in oleic acid-induced pulmonary edema. J Appl Physiol 82:1040–1045PubMedGoogle Scholar
  25. 25.
    Dreyfuss D, Martin-Lefevre L, Saumon G (1999) Hyperinflation-induced lung injury during alveolar flooding in rats: effect of perfluorocarbon instillation. Am J Respir Crit Care Med 159:1752–1757PubMedGoogle Scholar
  26. 26.
    Hughes JMB, Rosenzweig DY (1970) Factors affecting trapped gas volume in perfused dog lungs. J Appl Physiol 29:332–339PubMedGoogle Scholar
  27. 27.
    Falke KJ, Pontoppidan H, Kumar A, Leith DE, Geffin B, Laver MB (1972) Ventilation with end-expiratory pressure in acute lung disease. J Clin Invest 51:2315–2323PubMedCrossRefGoogle Scholar
  28. 28.
    Suter PM, Fairley B, Isenberg MD (1975) Optimum end-expiratory airway pressure in patients with acute pulmonary failure. N Engl J Med 292:284–289PubMedCrossRefGoogle Scholar
  29. 29.
    Matamis D, Lemaire F, Harf A, Brun-Buisson C, Ansquer JC, Atlan G (1984) Total respiratory pressure-volume curves in the adult respiratory distress syndrome. Chest 86:58–66PubMedGoogle Scholar
  30. 30.
    Benito S, Lemaire F (1990) Pulmonary pressure-volume relationship in acute respiratory distress syndrome in adults: role of positive end-expiratory pressure. J Crit Care 5:27–34CrossRefGoogle Scholar
  31. 31.
    Argiras EP, Blakeley CR, Dunnill MS, Otremski S, Sykes MK (1987) High peep decreases hyaline membrane formation in surfactant deficient lungs. Br J Anaesth 59:1278–1285PubMedGoogle Scholar
  32. 32.
    Sandhar BK, Niblett DJ, Argiras EP, Dunnill MS, Sykes MK (1988) Effects of positive end-expiratory pressure on hyaline membrane formation in a rabbit model of the neonatal respiratory distress syndrome. Intensive Care Med 14:538–546CrossRefPubMedGoogle Scholar
  33. 33.
    Muscedere JG, Mullen JB, Gan K, Slutsky AS (1994) Tidal ventilation at low airway pressures can augment lung injury. Am J Respir Crit Care Med 149:1327–1334PubMedGoogle Scholar
  34. 34.
    Sohma A, Brampton WJ, Dunnill MS, Sykes MK (1992) Effect of ventilation with positive end-expiratory pressure on the development of lung damage in experimental acid aspiration pneumonia in the rabbit. Intensive Care Med 18:112–117CrossRefPubMedGoogle Scholar
  35. 35.
    Martynowicz MA, Minor TA, Walters BJ, Hubmayr RD (1999) Regional expansion of oleic acid-injured lungs. Am J Respir Crit Care Med 160:250–258PubMedGoogle Scholar
  36. 36.
    Wilson TA, Anafi RC, Hubmayr RD (2001) Mechanics of edematous lungs. J Appl Physiol 90:2088–2093PubMedGoogle Scholar
  37. 37.
    Hubmayr RD (2002) Perspective on lung injury and recruitment: a skeptical look at the opening and collapse story. Am J Respir Crit Care Med 165:1647–1653CrossRefPubMedGoogle Scholar
  38. 38.
    Rizk NW, Murray JF (1982) PEEP and pulmonary edema. Am J Med 72:381–383CrossRefPubMedGoogle Scholar
  39. 39.
    Hopewell PC, Murray JF (1976) Effects of continuous positive-pressure ventilation in experimental pulmonary edema. J Appl Physiol 40:568–574PubMedGoogle Scholar
  40. 40.
    Luce JM, Huang TW, Robertson HT, et al (1983) The effects of prophylactic expiratory positive airway pressure on the resolution of oleic acid-induced lung injury in dogs. Ann Surg 197:327–336PubMedGoogle Scholar
  41. 41.
    Toung T, Saharia P, Permutt S, Zuidema GD, Cameron JL (1977) Aspiration pneumonia: beneficial and harmful effects of positive end-expiratory pressure. Surgery 82:279–283PubMedGoogle Scholar
  42. 42.
    Corbridge TC, Wood LDH, Crawford GP, Chudoba MJ, Yanos J, Sznadjer JI (1990) Adverse effects of large tidal volume and low PEEP in canine acid aspiration. Am Rev Respir Dis 142:311–315PubMedGoogle Scholar
  43. 43.
    Colmenero Ruiz M, Fernández Mondéjar E, Fernández Sacristán MA, Rivera Fernández R, Vazquez Mata G (1997) PEEP and low tidal volume ventilation reduce lung water in porcine pulmonary edema. Am J Respir Crit Care Med 155:964–970PubMedGoogle Scholar
  44. 44.
    Bshouty Z, Ali J, Younes M (1988) Effect of tidal volume and PEEP on rate of edema formation in in situ perfused canine lobes. J Appl Physiol 64:1900–1907PubMedGoogle Scholar
  45. 45.
    Permutt S (1979) Mechanical influences on water accumulation in the lungs. In: Fishman AP, Renkin EM (eds) Pulmonary Edema. Am Physiol Soc, Bethesda, pp: 175–193Google Scholar
  46. 46.
    Luce JM (1984) The cardiovascular effects of mechanical ventilation and positive end-expiratory pressure. JAMA 252:807–811CrossRefPubMedGoogle Scholar
  47. 47.
    Dreyfuss D, Saumon G (1993) Role of tidal volume, FRC, and end-inspiratory volume in the development of pulmonary edema following mechanical ventilation. Am Rev Respir Dis 148:1194–1203PubMedGoogle Scholar
  48. 48.
    Iliff LD (1971) Extra-alveolar vessels and edema development in excised dog lungs. Circ Res 28:524–532Google Scholar
  49. 49.
    Albert RK, Lakshminarayan S, Kirk W, Butler J (1980) Lung inflation can cause pulmonary edema in zone I of in situ dog lungs. J Appl Physiol 49:815–819PubMedGoogle Scholar
  50. 50.
    Pattle RE (1955) Properties, function and origin of the alveolar lining layer. Nature (Lond) 175:1125–1126PubMedGoogle Scholar
  51. 51.
    Clements JA (1961) Pulmonary edema and permeability of alveolar membranes. Arch Environ Health 2:280–283PubMedGoogle Scholar
  52. 52.
    Albert RK, Lakshminarayan S, Hildebrandt J, Kirk W, Butler J (1979) Increased surface tension favors pulmonary edema formation in anesthetized dogs’ lungs. J Clin Invest 63:1015–1018PubMedGoogle Scholar
  53. 53.
    Howell JBL, Permutt S, Proctor DF, Riley RL (1961) Effect of inflation of the lung on different parts of pulmonary vascular bed. J Appl Physiol 16:71–76PubMedGoogle Scholar
  54. 54.
    Benjamin JJ, Murtagh PS, Proctor DF, Menkes HA, Permutt S (1974) Pulmonary vascular interdependence in excised dog lobes. J Appl Physiol 37:887–894PubMedGoogle Scholar
  55. 55.
    Jefferies AL, Kawano T, Mori S, Burger R (1988) Effect of increased surface tension and assisted ventilation on 99mTc-DTPA clearance. J Appl Physiol 64:562–568PubMedGoogle Scholar
  56. 56.
    Nieman G, Ritter-Hrncirik C, Grossman Z, Witanowski L, Clark W, Bredenberg C (1990) High alveolar surface tension increases clearance of technetium 99m diethylenetriamine-pentaacetic acid. J Thorac Cardiovasc Surg 100:129–133PubMedGoogle Scholar
  57. 57.
    John J, Taskar V, Evander E, Wollmer P, Jonson B (1997) Additive nature of distension and surfactant perturbation on alveolocapillary permeability. Eur Respir J 10:192–199CrossRefPubMedGoogle Scholar
  58. 58.
    Woo SW, Hedley-White J (1972) Macrophage accumulation and pulmonary edema due to thoracotomy and lung overinflation. J Appl Physiol 33:14–21PubMedGoogle Scholar
  59. 59.
    Tsuno K, Miura K, Takeya M, Kolobow T, Morioka T (1991) Histopathologic pulmonary changes from mechanical ventilation at high peak airway pressures. Am Rev Respir Dis 143:1115–1120PubMedGoogle Scholar
  60. 60.
    Markos J, Doerschuk CM, English D, Wiggs BR, Hogg JC (1993) Effect of positive end-expiratory pressure on leukocyte transit in rabbit lungs. J Appl Physiol 74:2627–2633PubMedGoogle Scholar
  61. 61.
    Kawano T, Mori S, Cybulsky M, et al (1987) Effect of granulocyte depletion in a ventilated surfactant-depleted lung. J Appl Physiol 62:27–33PubMedGoogle Scholar
  62. 62.
    Ricard J-D, Dreyfuss D (2001) Cytokines during ventilator-induced lung injury: a word of caution. Anesth Analg 93:251–252PubMedGoogle Scholar
  63. 63.
    Tremblay L, Valenza F, Ribeiro SP, Li J, Slutsky AS (1997) Injurious ventilatory strategies increase cytokines and c-fos m-RNA expression in an isolated rat lung model. J Clin Invest 99:944–952PubMedCrossRefGoogle Scholar
  64. 64.
    Ricard J-D, Dreyfuss D, Saumon G (2001) Production of inflammatory cytokines during ventilator-induced lung injury: a reappraisal. Am J Respir Crit Care Med 163:1176–1180PubMedGoogle Scholar
  65. 65.
    Pugin J, Dunn I, Jolliet P, et al (1998) Activation of human macrophages by mechanical ventilation in vitro. Am J Physiol 275:L1040–L1050PubMedGoogle Scholar
  66. 66.
    Vlahakis NE, Schroeder MA, Limper AH, Hubmayr RD(1999) Stretch induces cytokine release by alveolar epithelial cells in vitro. Am J Physiol 277:L167–L173PubMedGoogle Scholar
  67. 67.
    Verbrugge SJC, Uhlig S, Neggers SJCM, et al (1999) Different ventilation strategies affect lung function but do not increase tumor necrosis factor-α and prostacyclin production in lavaged rat lungs in vivo. Anesthesiology 91:1834–1843PubMedGoogle Scholar
  68. 68.
    Takata M, Abe J, Tanaka H, et al (1997) Intraalveolar expression of tumor necrosis factor-alpha gene during conventional and high-frequency ventilation. Am J Respir Crit Care Med 156:272–279PubMedGoogle Scholar
  69. 69.
    Imanaka H, Shimaoka M, Matsuura N, Nishimura M, Ohta N, Kiyono H (2001) Ventilator-induced lung injury is associated with neutrophil infiltration, macrophage activation, and TGF-ss1mRNA Upregulation in rat lungs. Anesth Analg 92:428–436PubMedGoogle Scholar
  70. 70.
    Matsuoka T, Kawano T, Miyasaka K (1994) Role of high-frequency ventilation in surfactant-depleted lung injury as measured by granulocytes. J Appl Physiol 76:539–544PubMedGoogle Scholar
  71. 71.
    Sugiura M, McCulloch PR, Wren S, Dawson RH, Froese AB (1994) Ventilator pattern influences neutrophil influx and activation in atelectasis-prone rabbit lung. J Appl Physiol 77:1355–1365PubMedGoogle Scholar
  72. 72.
    Imai Y, Kawano T, Miyasaka K, Takata M, Imai T, Okuyama K (1994) Inflammatory chemical mediators during conventional ventilation and during high frequency oscillatory ventilation. Am J Respir Crit Care Med 150:1550–1554PubMedGoogle Scholar
  73. 73.
    von Bethmann AN, Brasch F, Nusing R, et al (1998) Hyperventilation induces release of cytokines from perfused mouse lung. Am J Respir Crit Care Med 157:263–272Google Scholar
  74. 74.
    Chiumello D, Pristine G, Slutsky AS (1999) Mechanical ventilation affects local and systemic cytokines in an animal model of acute respiratory syndrome. Am J Respir Crit Care Med 160:109–116PubMedGoogle Scholar
  75. 75.
    Nahum A, Hoyt J, Schmitz L, Moody J, Shapiro R, Marini JJ (1997) Effect of mechanical ventilation strategy on dissemination of intratracheally instilled Escherichia coli in dogs. Crit Care Med 25:1733–1743PubMedGoogle Scholar
  76. 76.
    Verbrugge SJ, Sorm V, van ’t Veen A, Mouton JW, Gommers D, Lachmann B 1998 Lung overinflation without positive end-expiratory pressure promotes bacteremia after experimental Klebsiella pneumoniae iculation. Intensive Care Med 24172–177CrossRefPubMedGoogle Scholar
  77. 77.
    Slutsky AS, Tremblay LN (1998) Multiple system organ failure. Is mechanical ventilation a contributing factor? Am J Respir Crit Care Med 157:1721–1725PubMedGoogle Scholar
  78. 78.
    Dreyfuss D, Saumon G (1998) From ventilator-induced lung injury to multiple organ dysfunction? [editorial]. Intensive Care Med 24:102–104CrossRefPubMedGoogle Scholar
  79. 79.
    Pugin J (2002) Is the ventilator responsible for lung and systemic inflammation? Intensive Care Med 28:817–819PubMedGoogle Scholar
  80. 80.
    Dos Santos CC, Slutsky AS (2000) Mechanisms of ventilator-induced lung injury: a perspective. J Appl Physiol 89:1645–1655PubMedGoogle Scholar
  81. 81.
    Parker JC, Townsley MI, Rippe B, Taylor AE, Thigpen J (1984) Increased microvascular permeability in dog lungs due to high peak airway pressures. J Appl Physiol 57:1809–1816PubMedGoogle Scholar
  82. 82.
    Parker JC, Ivey CL, Tucker A (1998) Gadolinium prevents high airway pressure-induced permeability increases in isolated rat lungs. J Appl Physiol 84:1113–1118PubMedGoogle Scholar
  83. 83.
    Parker JC (2000) Inhibitors of myosin light chain kinase and phosphodiesterase reduce ventilator-induced lung injury. J Appl Physiol 89:2241–2248PubMedGoogle Scholar
  84. 84.
    West JB, Tsukimoto K, Mathieu Costello M, Prediletto R (1991) Stress failure in pulmonary capillaries. J Appl Physiol 70:1731–1742PubMedGoogle Scholar
  85. 85.
    Fu Z, Costello ML, Tsukimoto K, et al (1992) High lung volume increases stress failure in pulmonary capillaries. J Appl Physiol 73:123–133PubMedGoogle Scholar
  86. 86.
    Vlahakis NE, Schroeder MA, Pagano RE, Hubmayr RD (2001) Deformation-induced lipid trafficking in alveolar epithelial cells. Am J Physiol 280:L938–L946Google Scholar
  87. 87.
    Tschumperlin DJ, Oswari J, Margulies SS (2000) Deformation-induced injury of alveolar epithelial cells: Effects of frequency, duration and amplitude. Am J Respir Crit Care Med 162:357–362PubMedGoogle Scholar
  88. 88.
    Laffey JG, Kavanagh BP (2002) Hypocapnia. N Engl J Med 347:43–53CrossRefPubMedGoogle Scholar
  89. 89.
    Laffey JG, Engelberts D, Kavanagh BP (2000) Injurious effects of hypocapnic alkalosis in the isolated lung. Am J Respir Crit Care 162:399–405Google Scholar
  90. 90.
    Laffey JG, Engelberts D, Kavanagh BP (2000) Buffering hypercapnic acidosis worsens acute lung injury. Am J Respir Crit Care Med 161:141–146PubMedGoogle Scholar
  91. 91.
    Broccard AF, Hotchkiss JR, Vannay C, et al (2001) Protective effects of hypercapnic acidosis on ventilator-induced lung injury. Am J Respir Crit Care Med 164:802–806PubMedGoogle Scholar
  92. 92.
    Sinclair SE, Kregenow DA, Lamm WJ, Starr IR, Chi EY, Hlastala MP (2002) Hypercapnic acidosis is protective in an in vivo model of ventilator-induced lung injury. Am J Respir Crit Care Med 166:403–408CrossRefPubMedGoogle Scholar
  93. 93.
    Gattinoni L, Pesenti A, Avalli L, Rossi F, Bombino M (1987) Pressure-volume curve of total respiratory system in acute respiratory failure. Computed tomographic scan study. Am Rev Respir Dis 136:730–736PubMedGoogle Scholar
  94. 94.
    Gattinoni L, Pelosi P, Crotti S, Valenza F (1995) Effects of positive end-expiratory pressure on regional distribution of tidal volume and recruitment in adult respiratory distress syndrome. Am J Respir Crit Care Med 151:1807–1814PubMedGoogle Scholar
  95. 95.
    Roupie E, Dambrosio M, Servillo G, et al (1995) Titration of tidal volume and induced hypercapnia in acute respiratory distress syndrome. Am J Respir Crit Care Med 152:121–128PubMedGoogle Scholar
  96. 96.
    Dambrosio M, Roupie E, Mollet JJ, et al (1997) Effects of positive end-expiratory pressure and different tidal volumes on alveolar recruitment and hyperinflation. Anesthesiology 87:495–503PubMedGoogle Scholar
  97. 97.
    Ranieri VM, Mascia L, Fiore T, Bruno F, Brienza A, Giuliani R (1995) Cardiorespiratory effects of positive end-expiratory pressure during progressive tidal volume reduction (permissive hypercapnia) in patients with acute respiratory distress syndrome. Anesthesiology 83:710–720PubMedGoogle Scholar
  98. 98.
    Hickling KG (1998) The pressure-volume curve is greatly modified by recruitment. A mathematical model of ards lungs. Am J Respir Crit Care Med 158:194–202PubMedGoogle Scholar
  99. 99.
    Jonson B, Richard JC, Straus C, Mancebo J, Lemaire F, Brochard L (1999) Pressure-volume curves and compliance in acute lung injury: evidence of recruitment above the lower inflection point. Am J Respir Crit Care Med 159:1172–1178PubMedGoogle Scholar
  100. 100.
    Martin-Lefèvre L, Ricard J-D, Roupie E, Dreyfuss D, Saumon G (2001) Significance of the changes in the respiratory system pressure-volume curve during acute lung injury in rats. Am J Respir Crit Care Med 164:627–632PubMedGoogle Scholar
  101. 101.
    Gibson GJ, Pride NB (1977) Pulmonary mechanics in fibrosing alveolitis: the effects of lung shrinkage. Am Rev Respir Dis 116:637–647PubMedGoogle Scholar
  102. 102.
    Mead J, Takishima T, Leith D (1970) Stress distribution in lungs: a model of pulmonary elasticity. J Appl Physiol 28:596–608PubMedGoogle Scholar
  103. 103.
    Dreyfuss D, Saumon G (2002) Evidence-based medicine or fuzzy logic: what is best for ARDS management? Intensive Care Med 28:230–234CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • J. D. Ricard
  • D. Dreyfuss
  • G. Saumon

There are no affiliations available

Personalised recommendations