Advertisement

Mechanics pp 355-417 | Cite as

Stability and Chaos

Part of the Advanced Texts in Physics book series (ADTP)

Keywords

Vector Field Hamiltonian System Equilibrium Position Chaotic Behavior Chaotic Motion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Chapter 6

  1. Arnol’d, V.I.: Catastrophe Theory (Springer, Berlin, Heidelberg 1986)MATHGoogle Scholar
  2. Bergé, P., Pomeau, Y., Vidal, C.: Order within Chaos; Towards a Deterministic Approach to Turbulence (Wiley, New York 1986) French original (Hermann, Paris 1984)MATHGoogle Scholar
  3. Chirikov, B.V.: A Universal Instability of Many-Dimensional Oscillator Systems, Physics Reports 52, 263 (1979)CrossRefADSMathSciNetGoogle Scholar
  4. Collet, P., Eckmann, J.P.: Iterated Maps on the Interval as Dynamical Systems (Birkhäuser, Boston 1990)Google Scholar
  5. Devaney, R.L.: An Introduction to Chaotic Dynamical Systems (Benjamin Cummings, Reading 1989)MATHGoogle Scholar
  6. Feigenbaum, M.: J. Stat. Phys. 19, 25 (1978) and 21, 669 (1979)CrossRefMATHMathSciNetADSGoogle Scholar
  7. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (Springer, Berlin, Heidelberg 1990)Google Scholar
  8. Hénon, M., Heiles, C.: Astron. Journ. 69, 73 (1964)ADSCrossRefGoogle Scholar
  9. Hirsch, M.W., Smale, S.: Differential Equations, Dynamical Systems and Linear Algebra (Academic, New York 1974)MATHGoogle Scholar
  10. Palis, J., de Melo, W.: Geometric Theory of Dynamical Systems (Springer, Berlin, Heidelberg 1982)MATHGoogle Scholar
  11. Peitgen, H.O., Richter, P.H.: The Beauty of Fractals, Images of Complex Dynamical Systems (Springer, Berlin, Heidelberg 1986)MATHGoogle Scholar
  12. Ruelle, D.: Chance and Chaos (Princeton University Press, New Jersey, 1991)Google Scholar
  13. Ruelle, D.: D.: Elements of Differential Dynamics and Bifurcation Theory (Academic, New York 1989)Google Scholar
  14. Schuster, H.G.: Deterministic Chaos, An Introduction (Physik-Verlag, Weinheim 1987)Google Scholar
  15. Wisdom, J.: Chaotic Behaviour in the Solar System, Nucl. Phys. B (Proc. Suppl.) 2, 391 (1987)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Personalised recommendations