Street Centreline Generation with an Approximated Area Voronoi Diagram

  • Steven A. Roberts
  • G. Brent Hall
  • Barry Boots
Conference paper


This paper presents a methodology to generate a topologically correct street centreline from city block boundaries using ArcGIS software. The approach utilises Sugihara’s (1992) point approximation algorithm as a starting point to create an area Voronoi diagram which forms the basis of the centreline. A recursive method is introduced to schematize the geometry of the Voronoi medial axis. The approach is applied to data from the City of Rosario, Argentina. The paper concludes with suggestions for further enhancements to the approach that have, among other things, the potential to automate attribution to network segments using adjacent polygon attributes.


Approximation Algorithm Geographical Information Point Approximation Urban Planning Voronoi Diagram 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alnoor, L. and Martinez, R. (1996). Automated derivation of high accuracy road centerlines using Thiessen polygons technique. In ESRI User Conference Proceedings.Google Scholar
  2. Amenta, N., Bern, M., and Eppstein, D. (1998). The crust and the β-skeleton: Combinatorial curve reconstruction. Graphical Models and Image Processing, 60/2 (2):125–135.CrossRefGoogle Scholar
  3. Burge, M. and Monagan, G. (1995a). Extracting words and multi-part symbols in graphics rich documents, volume 97 of Lecture Notes in Computer Science, pages 533–538. Springer-Verlag.Google Scholar
  4. Burge, M. and Monagan, G. (1995b). Using the voronoi tessellation for grouping words and multi-part symbols in documents. In Proceedings, Vision Geometry IV, SPIE International Symposium on Optics, Imaging and Instrumentation, pages 116–124.Google Scholar
  5. Burge, M. and Monagan, G. (1995c). Using the voronoi tessellation for grouping words and multi-part symbols in documents. Technical report, Institute of Systems Science, Johannes Kepler University.Google Scholar
  6. Cao, W. and Qin, Q. (1998). A knowledge-based research for road extraction from digital satellite images. Acta Scientiarium Naturalium Universitatis Pekinensis, 34(2–3):254–263.Google Scholar
  7. Couloiger, I. and Ranchin, T. (2000). Mapping of urban areas: a multi-resolution modeling approach for semiautomatic extraction of streets. Photogrammetric Engineering and Remote Sensing, 66(7):867–874.Google Scholar
  8. ESRI (2000). White paper on CENTERLINE command.Google Scholar
  9. Eykamp, C. (1999). Supercharge AMLs with embedded Perl. ArcUser, pages 44–46.Google Scholar
  10. Fiset, R. and Cavayas, F. (1997). Automatic comparison of a topographic map with remotely sensed images in a map updating perspective: the road network case. International Journal of Remote Sensing, 18(4):991–1006.Google Scholar
  11. Flanagan, N., Jennings, C, and Flanagan, C. (1994). Automatic GIS data capture and conversion. In Worboys, M. F., editor, Innovations in GIS I, pages 25–38. Taylor & Francis.Google Scholar
  12. Gold, C. (2000). Primal/dual relationships and applications. In Proceedings of the 9th International Symposium on Spatial Data Handling, pages 4a.l5–4a.27.Google Scholar
  13. Gold, C, Nantel, J., and Yang, W. (1996). Outside-in: an alternative approach to forest map digitizing. International Journal of Geographical Information Systems, 10(3):291–310.Google Scholar
  14. Gold, C. and Snoeyink, J. (2001). A one-step crust and skeleton extraction algorithm. Algorithmica, 30:144–163.CrossRefGoogle Scholar
  15. Ilg, M. (1990a). Knowledge-based interpretation of road maps. In Proceedings of the 4th International Symposium on Spatial Data Handling, volume 1, pages 25–34.Google Scholar
  16. Ilg, M. (1990b). Knowledge-based understanding of road maps and other line images. In Proceedings, 10th International Conference on Pattern Recognition, volume 1, pages 282–284. IEEE Computer Society Press.Google Scholar
  17. K. Kise, A. S. and Iwata, M. (1998). Segmentation of page images using the area voronoi diagram. Computer Vision and Image Understanding, 70(3):370–382.CrossRefGoogle Scholar
  18. Krozel, J. and II, D. A. (1990). Navigation path planning for autonomous aircraft: Voronoi diagram approach. Journal of Guidance, Control, and Dynamics, 13(6):1152–1154.Google Scholar
  19. Meng, A. C.-C. (1987). Flight path planning under uncertainty for robotic air vehicles. In IEEE National Aerospace and Electronics Conference, Institute of Electrical and Electronics Engineers, pages 359–366.Google Scholar
  20. N. S. V. Rao, N. S. and Iyengar, S. (1991). A ‘reaction’ method for learned navigation in unknown terrains for a circular robot. IEEE Transactions on Robotics and Automation, 7(5):699–707.CrossRefGoogle Scholar
  21. Ó’Dúnlaing, C. and Yap, C. (1985). A ‘reaction’ method for planning the motion of a disk. Journal of Algorithms, 6:104–111.Google Scholar
  22. Ogniewicz, R. (1993). Discrete Voronoi Skeletons. Konstanz: Hartung-Gorre Verlag.Google Scholar
  23. Ogniewicz, R. and Ilg, M. (1992). Voronoi skeletons: theory and applications.Google Scholar
  24. Ogniewicz, R. and Kübler, O. (1995). Hierarchic Voronoi skeletons. Pattern Recognition, 28(3):343–359.CrossRefGoogle Scholar
  25. Okabe, A., Boots, B., Sugihara, K., and Chiu, S. (2000). Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. Wiley, second edition.Google Scholar
  26. O’Rourke, J. (1998). Computational Geometry in C Cambridge University Press, second edition.Google Scholar
  27. Radke, J. and Flodmark, A. (1999). The use of spatial decompositions for constructing street centerlines. Geographical Information Sciences, 5(1):15–23.Google Scholar
  28. Schwartz, J. and Yap, C. (1986). Advances in Robotics. Lawrence Erlbaum Associates.Google Scholar
  29. Serra, J. (1982). Image Analysis and Mathematical Morphology. Academic Press Inc.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Steven A. Roberts
    • 1
  • G. Brent Hall
    • 2
  • Barry Boots
    • 1
  1. 1.Department of Geography and Env. StudiesWilfrid Laurier UniversityCanada
  2. 2.Faculty of Environmental StudiesUniversity of WaterlooWaterloo

Personalised recommendations