Advertisement

Sandbox Geography — To learn from children the form of spatial concepts

  • Florian A. Twaroch
  • Andrew U. Frank

Abstract

The theory theory claims that children’s acquisition of knowledge is based on forming and revising theories, similar to what scientists do (Gopnik and Meltzoff 2002). Recent findings in developmental psychology provide evidence for this hypothesis.

Children have concepts about space that differ from those of adults. During development these concepts undergo revisions.

This paper proposes the formalization of children’s theories of space in order to reach a better understanding on how to structure spatial knowledge. Formal models can help to make the structure of spatial knowledge more comprehensible and may give insights in how to build GIS. Selected examples for object appearances are modeled using an algebra. An Algebra Based Agent is presented and coded in a functional programming language as a simple computational model.

Keywords

Theory Theory Geographic Information System Object Permanence Core Knowledge Hide Object 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Bird, R. (1998). Introduction to Functional Programming Using Haskell. Hemel Hempstead, UK, Prentice Hall Europe.Google Scholar
  2. Egenhofer, M. J. and D. M. Mark (1995). Naive Geography. Lecture Notes in Computer Science (COSIT ’95, Semmering, Austria). A. U. Frank and W. Kuhn, Springer Verlag. 988: 1–15.Google Scholar
  3. Ferber, J., Ed. (1998). Multi-Agent Systems — An Introduction to Distributed Artificial Intelligence, Addison-Wesley.Google Scholar
  4. Fodor, J. A. (1987). The modularity of mind: an essay on faculty psychology. Cambridge, Mass., MIT Press.Google Scholar
  5. Frank, A. U. (1999). One Step up the Abstraction Ladder: Combining Algebras — From Functional Pieces to a Whole. Spatial Information Theory — Cognitive and Computational Foundations of Geographic Information Science (Int. Conference COSIT’99, Stade, Germany). C. Freksa and D. M. Mark. Berlin, Springer-Verlag. 1661: 95–107.Google Scholar
  6. Frank, A. U. (2000). "Spatial Communication with Maps: Defining the Correctness of Maps Using a Multi-Agent Simulation." Spatial Cognition II: 80–99.Google Scholar
  7. Frank, A. U. (2001). "Tiers of ontology and consistency constraints in geographic information systems." International Journal of Geographical Information Science 75(5 (Special Issue on Ontology of Geographic Information)): 667–678.Google Scholar
  8. Gopnik, A. and A. N. Meltzoff (2002). Words, Thoughts, and Theories. Cambridge, Massachusetts, MIT Press.Google Scholar
  9. Gopnik, A., A. N. Meltzoff, et al. (2001). The Scientist in the Crib — What early learning tells us about the mind. New York, Perennial — HarperCollins.Google Scholar
  10. Hayes, P. (1985). The Second Naive Physics Manifesto. Formal Theories of the Commonsense World. J. R. Hobbs and R. C. Moore. Norwood, New Jersey, Ablex Publishing Corporation: 1–36.Google Scholar
  11. Hayes, P. J. (1978). The Naive Physics Manifesto. Expert Systems in the Microelectronic Age. D. Mitchie. Edinburgh, Edinburgh University Press: 242–270.Google Scholar
  12. Hobbs, J. and R. C. Moore, Eds. (1985). Formal Theories of the Commonsense World. Ablex Series in Artificial Intelligence. Norwood, NJ, Ablex Publishing Corp.Google Scholar
  13. Loeckx, J., H.-D. Ehrich, et al. (1996). Specification of Abstract Data Types. Chichester, UK and Stuttgart, John Wiley and B.G. Teubner.Google Scholar
  14. Mark, D. M. and M. J. Egenhofer (1996). Common-Sense Geography: Foundations for Intuitive Geographic Information Systems. GIS/LIS ’96, Betsheda, American Society for Photogrammetry and Remote Sensing.Google Scholar
  15. McCloskey, M. (1983). Naive Theories of Motion. Mental Models. D. Genter and A. L. Stevens, Lawrence Erlbaum Associates.Google Scholar
  16. Newcombe, N. S. and J. Huttenlocher (2003). Making Space: The Development of Spatial Representation and Reasoning. Cambridge, Massachusetts, MIT Press.Google Scholar
  17. Piaget, J. and B. Inhelder (1999). Die Entwicklung des räumlichen Denkens beim Kinde. Stuttgart, Klett-Cotta.Google Scholar
  18. Piaget, J., B. Inhelder, et al. (1975). Die natürliche Geometrie des Kindes. Stuttgart, Ernst Klett Verlag.Google Scholar
  19. Pinker, S. (1995). The Language Instinct. New York, HarperPerennial.Google Scholar
  20. Raubal, M. (2001). Agent-based Simulation of Human Wayfinding: A Perceptual Model for Unfamiliar Buildings. Institute for Geoinformation. Vienna, Vienna University of Technology: 159.Google Scholar
  21. Russell, S. J. and P. Norvig (1995). Artificial Intelligence. Englewood Cliffs, NJ, Prentice Hall.Google Scholar
  22. Smith, B. and D. M. Mark (2001). "Geographical categories: an ontological investigation." International Journal of Geographical Information Science 15(7 (Special Issue — Ontology in the Geographic Domain)): 591–612.Google Scholar
  23. Spelke, E. S. (2000). "Core Knowledge." American Psychologist November 2000: 1233–1243.Google Scholar
  24. Spelke, E. S., K. Breinlinger, et al. (1992). "Origins of knowledge." Psychological Review 99: 605–632.CrossRefGoogle Scholar
  25. Spelke, E. S. and G. S. Van de Walle (1993). Perceiving and reasoning about obects: insights from infants. Spatial representations: problems in philosphy and psychology. N. Eilan, R. McCarthy and B. Brewer. Cambridge, Massachusetts, Blackwell: 132–161.Google Scholar
  26. von Hofsten, C., Q. Feng, et al. (2000). "Object representation and predictive action in infancy." Developmental Science 3(2): 193–205.CrossRefGoogle Scholar
  27. Weiss, G. (1999). Multi-Agent Systems: A Modern Approach to Distributed Artificial Intelligence. Cambridge, Mass., The MIT Press.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Florian A. Twaroch
    • 1
  • Andrew U. Frank
    • 1
  1. 1.Institute for Geoinformation and CartographyTU ViennaVienna

Personalised recommendations