Almazán F, González JM, Pénzes Z, Izeta A, Calvo E, Plana-Durán J, Enjuanes L (2000) Engineering the largest RNA virus genome as an infectious bacterial artificial chromosome. Proc Natl Acad Sci USA 97:5516–5521
PubMed
PubMed Central
CrossRef
Google Scholar
Alonso S, Sola I, Teifke J, Reimann I, Izeta A, Balach M, Plana-Durán J, Moormann RJM, Enjuanes L (2002) In vitro and in vivo expression of foreign genes by transmissible gastroenteritis coronavirus-derived minigenomes. J Gen Virol 83:567–579
PubMed
CrossRef
Google Scholar
Ballesteros ML, Sánchez CM, Enjuanes L (1997) Two amino acid changes at the N-terminus of transmissible gastroenteritis coronavirus spike protein result in the loss of enteric tropism. Virology 227:378–388
CAS
PubMed
CrossRef
Google Scholar
Bonilla PJ, Gorbalenya AE, Weiss SR (1994) Mouse hepatitis virus strain A59 RNA polymerase gene ORF 1a: heterogeneity among MHV strains. Virology 198:736–740
CAS
PubMed
CrossRef
Google Scholar
Boyer JC, Haenni AL (1994) Infectious transcripts and cDNA clones of RNA viruses. Virology 198:415–426
CAS
PubMed
CrossRef
Google Scholar
Casais R, Thiel V, Siddell SG, Cavanagh D, Britton P (2001) Reverse genetics system for the avian coronavirus infectious bronchitis virus. J Virol 75:12359–12369
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Cavanagh D, Brian DA, Britton P, Enjuanes L, Horzinek MC, Lai MMC, Laude H, Plagemann PGW, Siddell S, Spaan W, Talbot PJ (1997) Nidovirales: a new order comprising Coronaviridae and Arteriviridae. Arch Virol 142:629–635
CAS
PubMed
Google Scholar
Cho MK, Magnus D, Caplan AL, McGee D, Ethics of Genomics Group (1999) GENETICS:Ethical Considerations in Synthesizing a Minimal Genome. Science 286:2087–2090
CAS
PubMed
CrossRef
Google Scholar
Curtis KM, Yount B, Baric RS (2002) Heterologous gene expression from transmissible gastroenteritis virus replicon particles. J Virol 76:1422–1434
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Delmas B, Gelfi J, L'Haridon R, Vogel LK, Norén O, Laude H (1992) Aminopeptidase N is a major receptor for the enteropathogenic coronavirus TGEV. Nature 357:417–420
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
de Vries AAF, Horzinek MC, Rottier PJM, de Groot RJ (1997) The genome organization of the Nidovirales: similarities and differences between arteri-, toro-, and coronaviruses. Semin Virol 8:33–47
PubMed
PubMed Central
CrossRef
Google Scholar
Drosten C, Günther S, Preiser W, van der Werf S, Brodt H-R, Becker S, Rabenau H, Panning M, Kolesnikova L, Fouchier RAM, Berger A, Burguiere A-M, Cinatl J, Eickmann M, Escriou N, Grywna K, Kramme S, Manuguerra J-C, Muller S, Rickerts W, Sturmer MV, S., Klenk H-D, Osterhaus ADME (2003) Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med 348:1967–1976
CAS
PubMed
CrossRef
Google Scholar
Eleouet JF, Rasschaert D, Lambert P, Levy L, Vende P, Laude H (1995) Complete sequence (20 kilobasee not been fully characterized. The structure and function of the ∼20-kb MHV replicase domain will likely remain a fertile area of research for the next decade and reveal novel protein functions that participate and regulate discontinuous transcription and high-frequency RNA recombination. Although large panels of reagents are available for analyzing replicase protein expression, processing, and subcellular localization, a spectrum of genetically informative mutations have not been systematically targeted to any of these replicase proteins. Given the complexity and size of the coronavirus replicase gene, the number of potential mutants that can be generated is enormous and will likely require bioinformatic approaches for building and testing specific hypotheses. For example, the ORF1a C-terminal MHV p15 protein is highly conserved among group I through III coronaviruses and contains a large number of conserved cysteine residues and predicted phosphorylation, myristylation, and glycosylation sites (prosite, spect of coronavirus transcription. J Virol 71:5148–5160
Google Scholar
Fu K, Baric RS (1994) Map locations of mouse hepatitis virus temperature-sensitive mutants: confirmation of variable rates of recombination. J Virol 68:7458–7466
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Fu KS, Baric RS (1992) Evidence for variable rates of recombination in the MHV genome. Virology 189:88–102
CAS
PubMed
CrossRef
Google Scholar
Grimes B, Cooke H (1998) Engineering mammalian chromosomes. Hum Mol Genet 7:1635–1640
CAS
PubMed
CrossRef
Google Scholar
Hsue B, Masters PS (1999) Insertion of a new transcriptional unit into the genome of mouse hepatitis virus. J Virol 73:6128–6135
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Hutchison CA III, Peterson SN, Gill SR, Cline RT, White O, Fraser CM, Smith HO, Venter JC (1999) Global transposon mutagenesis and a minimal mycoplasma genome. Science 286:2165–2169
CAS
PubMed
CrossRef
Google Scholar
Izeta A, Smerdou C, Alonso S, Penzes Z, Méndez A, Plana-Durán J, Enjuanes L (1999) Replication and packaging of transmissible gastroenteritis coronavirus-derived synthetic minigenomes. J Virol 73:1535–1545
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Ksiazek TG, Erdman D, Goldsmith C, Zaki S, Peret T, Emery S, Tong S, Urbani C, Comer JA, Lim W, Rollin PE, Dowell S, Ling A-E, Humphrey C, Shieh W-J, Guarner J, Paddock CD, Rota P, Fields B, DeRisi J, Yang J-Y, Cox N, Hughes J, LeDuc JW, Bellini WJ, Anderson LJ (2003) A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med 348:1953–1966
CAS
PubMed
CrossRef
Google Scholar
Kuo L, Godeke G-J, Raamsman MJB, Masters PS, Rottier PJM (2000) Retargeting of coronavirus by substitution of the spike glycoprotein ectodomain: crossing the host cell species barrier. J Virol 74:1393–1406
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Lai MMC, Cavanagh D (1997) The molecular biology of coronaviruses. Adv Virus Res 48:1–100
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Laude H, Rasschaert D, Delmas B, Godet M, Gelfi J, Bernard C (1990) Molecular biology of transmissible gastroenteritis virus. Vet Microbiol 23:147–154
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Lee HJ, Shieh CK, Gorbalenya AE, Koonin EV, Lamonica N, Tuler J, Bagdzhadzhyan A, Lai MMC (1991) The complete sequence (22 kilobases) of murine coronavirus gene-1 encoding the putative proteases and RNA polymerase. Virology 180:567–582
CAS
PubMed
CrossRef
Google Scholar
Leparc-Goffart I, Hingley ST, Chua MM, Phillips J, Lavi E, Weiss SR (1998) Targeted recombination within the spike gene of murine coronavirus mouse hepatitis virus-A59: Q159 is a determinant of hepatotropism. J Virol 72:9628–9636
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Masters PS (1999) Reverse genetics of the largest RNA viruses. Adv Virus Res 53:245–264
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
McGoldrick A, Lowings JP, Paton DJ (1999) Characterisation of a recent virulent transmissible gastroenteritis virus from Britain with a deleted ORF 3a. Arch Virol 144:763–770
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Narayanan K, Makino S (2001) Cooperation of an RNA packaging signal and a viral envelope protein in coronavirus RNA packaging. J Virol 75:9059–9067
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Ng LFP, Liu DX (2002) Membrane association and dimerization of a cysteine-rich, 16-kilodalton polypeptide released from the C-terminal region of the coronavirus infectious bronchitis virus 1a polyprotein. J Virol 76:6257–6267
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Penzes Z, González JM, Calvo E, Izeta A, Smerdou C, Mendez A, Sánchez CM, Sola I, Almazán F, Enjuanes L (2001) Complete genome sequence of transmissible gastroenteritis coronavirus PUR46-MAD clone and evolution of the Purdue virus cluster. Virus Genes 23:105–118
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Peters CJ, Sanchez A, Rollin PE, Ksiazek TG, Murphy FA (1996) Filoviridae: Marburg and Ebola Viruses. In: Fields BN, Knipe DM, Howley PM, Chanock RM, Melnick JL, Monath TP, Roizman B and Straus SE (eds) Field's Virology. Lippincott Williams and Wilkens, Philadelphia, pp 1161–1176
Google Scholar
Pingoud A, Jeltsch A (2001) Structure and function of type II restriction endonucleases. Nucl Acids Res 29:3705–3727
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Repass JF, Makino S (1998) Importance of the positive-strand RNA secondary structure of a murine coronavirus defective interfering RNA internal replication signal in positive-strand RNA synthesis. J Virol 72:7926–7933
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Rice CM, Grakoui A, Galler R, Chambers TJ (1989) Transcription of infectious yellow fever RNA from full-length cDNA templates produced by in vitro ligation. New Biol 1:285–296
CAS
PubMed
Google Scholar
Risco C, Antón IM, Enjuanes L, Carrascosa JL (1996) The transmissible gastroenteritis coronavirus contains a spherical core shell consisting of M and N proteins. J Virol 70:4773–4777
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: A laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
Google Scholar
Sánchez CM, Gebauer F, Suñé C, Méndez A, Dopazo J, Enjuanes L (1992) Genetic evolution and tropism of transmissible gastroenteritis coronaviruses. Virology 190:92–105
PubMed
CrossRef
Google Scholar
Sánchez CM, Izeta A, Sánchez-Morgado JM, Alonso S, Sola I, Balasch M, Plana-Durán J, Enjuanes L (1999) Targeted recombination demonstrates that the spike gene of transmissible gastroenteritis coronavirus is a determinant of its enteric tropism and virulence. J Virol 73:7607–7618
PubMed
PubMed Central
CrossRef
Google Scholar
Schaad M, Baric RS (1994) Genetics of mouse hepatitis virus transcription: evidence that subgenomic negative strands are functional templates. J Virol 68:8169–8179
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Siddell SG (1995) The Coronaviridae: an introduction. In: Siddell SG (ed) The Coronaviridae. Plenum Press, New York The Viruses, pp 1–10
CrossRef
Google Scholar
Siddell SG, Sawicki D, Meyer Y, Thiel V, Sawicki S (2001) Identification of the mutations responsible for the phenotype of three MHV RNA-negative ts mutants. Adv Exp Med Biol 494:453–458
CAS
PubMed
CrossRef
Google Scholar
Smith GA, Enquist LW (2000) A self-recombining bacterial artificial chromosome and its application for analysis of herpesvirus pathogenesis. Proc Natl Acad Sci USA 97:4873–4878
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Stalcup RP, Baric RS, Leibowitz JL (1998) Genetic complementation among three panels of mouse hepatitis virus gene 1 mutants. Virology 241:112–121
CAS
PubMed
CrossRef
Google Scholar
Thiel V, Herold J, Schelle B, Siddell SG (2001) Viral replicase gene products suffice for coronavirus discontinuous transcription. J Virol 75:6676–6681
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Tresnan DB, Levis R, Holmes KV (1996) Feline aminopeptidase N serves as a receptor for feline, canine, porcine, and human coronaviruses in serogroup I. J Virol 70:8669–8674
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
van Zijl M, Quint W, Briaire J, de Rover T, Gielkens A, Berns A (1988) Regeneration of herpesviruses from molecularly cloned subgenomic fragments. J Virol 62:2191–2195
PubMed
PubMed Central
CrossRef
Google Scholar
Wesley RD, Woods RD, Cheung AK (1991) Genetic analysis of porcine respiratory coronavirus, an attenuated variant of transmissible gastroenteritis virus. J Virol 65:3369–3373
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Williams GD, Chang R-Y, Brian DA (1999) A phylogenetically conserved hairpin-type 3′ untranslated region pseudoknot functions in coronavirus RNA replication. J Virol 73:8349–8355
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Yount B, Curtis KM, Baric RS (2000) Strategy for systematic assembly of large RNA and DNA genomes: the transmissible gastroenteritis virus model. J Virol 74:10600–10611
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Yount B, Denison MR, Weiss SR, Baric RS (2002) Systematic assembly of a full length infectious cDNA of mouse hepatitis virus stain A59. J Virol 76:11065–11078
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Yount B, Curtis KM, Fritz EA, Hensley LE, Jahrling PB, Prentice E, Denison MR, Geisbert TW, Baric RS (2003) Reverse genetics with a full-length infectious cDNA of severe acute respiratory syndrome coronavirus. Proc Natl Acad Sci USA 100:12995–13000
CAS
PubMed
PubMed Central
CrossRef
Google Scholar