Skip to main content

Advertisement

SpringerLink
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
Book cover

Coronavirus Replication and Reverse Genetics pp 199–227Cite as

  1. Home
  2. Coronavirus Replication and Reverse Genetics
  3. Chapter
Reverse Genetics of Coronaviruses Using Vaccinia Virus Vectors

Reverse Genetics of Coronaviruses Using Vaccinia Virus Vectors

  • V. Thiel2 &
  • S. G. Siddell3 
  • Chapter
  • First Online: 25 October 2005
  • 12k Accesses

  • 29 Citations

  • 1 Altmetric

Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY,volume 287)

Abstract

In this article, we describe the reverse genetic system that is based on the use of vaccinia virus cloning vectors. This system represents a generic approach to coronavirus reverse genetics and was first described for the generation of recombinant human coronavirus 229E representing a group I coronavirus. Subsequently, the same approach has been used to generate recombinant avian infectious bronchitis coronavirus and, recently, recombinant mouse hepatitis virus, representing group III and group II coronaviruses, respectively. We describe how vaccinia virus-mediated homologous recombination can be used to introduce specific mutations into the coronavirus genomic cDNA during its propagation in vaccinia virus and how recombinant coronaviruses can be isolated. Finally, we describe how the coronavirus reverse genetic system has now been extended to the generation of coronavirus replicon RNAs.

Keywords

  • Vaccinia Virus
  • Recombinant Vaccinia Virus
  • Replicase Gene
  • Reverse Genetic System
  • Human Coronavirus

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Chapter PDF

Download to read the full chapter text

References

  • Almazan F, Gonzalez JM, Penzes Z, Izeta A, Calvo E, Plana-Duran J, Enjuanes L (2000) Engineering the largest RNA virus genome as an infectious bacterial artificial chromosome. Proc Natl Acad Sci USA 97:5516–5521

    CrossRef  CAS  Google Scholar 

  • Ball LA (1987) High-frequency homologous recombination in vaccinia virus DNA. J Virol 61:1788–1795

    CrossRef  CAS  Google Scholar 

  • Bos EC, Luytjes W, van der Meulen HV, Koerten HK, Spaan WJ (1996) The production of recombinant infectious DI-particles of a murine coronavirus in the absence of helper virus. Virology 218:52–60

    CrossRef  CAS  Google Scholar 

  • Britton P, Green P, Kottier S, Mawditt KL, Penzes Z, Cavanagh D, Skinner MA (1996) Expression of bacteriophage T7 RNA polymerase in avian and mammalian cells by a recombinant fowlpox virus. J Gen Virol 77:963–7

    CrossRef  CAS  Google Scholar 

  • Casais R, Dove B, Cavanagh D, Britton P (2003) Recombinant avian infectious bronchitis virus expressing a heterologous spike gene demonstrates that the spike protein is a determinant of cell tropism. J Virol 77:9084–9089

    CrossRef  CAS  Google Scholar 

  • Casais R, Thiel V, Siddell SG, Cavanagh D, Britton P (2001) Reverse genetics system for the avian coronavirus infectious bronchitis virus. J Virol 75:12359–12369

    CrossRef  CAS  Google Scholar 

  • Curtis KM, Yount B, Baric RS (2002) Heterologous gene expression from transmissible gastroenteritis virus replicon particles. J Virol 76:1422–1434

    CrossRef  CAS  Google Scholar 

  • Gossen M, Freundlieb S, Bender G, Muller G, Hillen W, Bujard H (1995) Transcriptional activation by tetracyclines in mammalian cells. Science 268:1766–1769

    CrossRef  CAS  Google Scholar 

  • Haring J, Perlman S (2001) Mouse hepatitis virus. Curr Opin Microbiol 4:462–466

    CrossRef  CAS  Google Scholar 

  • Herold J, Gorbalenya AE, Thiel V, Schelle B, Siddell SG (1998) Proteolytic processing at the amino terminus of human coronavirus 229E gene 1-encoded polyproteins: identification of a papain-like proteinase and its substrate. J Virol 72:910–918

    CrossRef  CAS  Google Scholar 

  • Hertzig T, Scandella E, Schelle B, Ziebuhr J, Siddell SG, Ludewig B, Thiel V (2004) Rapid identification of coronavirus replicase inhibitors using a selectable replicon RNA. J Gen Virol 85:1717–1725

    CrossRef  CAS  Google Scholar 

  • Kerr SM, Smith GL (1991) Vaccinia virus DNA ligase is nonessential for virus replication: recovery of plasmids from virus-infected cells. Virology 180:625–632

    CrossRef  CAS  Google Scholar 

  • Kim YN, Jeong YS, Makino S (1993) Analysis of cis-acting sequences essential for coronavirus defective interfering RNA replication. Virology 197:53–63

    CrossRef  CAS  Google Scholar 

  • Merchlinsky M, Moss B (1992) Introduction of foreign DNA into the vaccinia virus genome by in vitro ligation: recombination-independent selectable cloning vectors. Virology 190:522–526

    CrossRef  CAS  Google Scholar 

  • Ortego J, Escors D, Laude H, Enjuanes L (2002) Generation of a replication-competent, propagation-deficient virus vector based on the transmissible gastroenteritis coronavirus genome. J Virol 76:11518–11529

    CrossRef  CAS  Google Scholar 

  • Pietschmann T, Bartenschlager R (2001) The hepatitis C virus replicon system and its application to molecular studies. Curr Opin Drug Discov Devel 4:657–664

    CAS  PubMed  Google Scholar 

  • Scheiflinger F, Dorner F, Falkner FG (1992) Construction of chimeric vaccinia viruses by molecular cloning and packaging. Proc Natl Acad Sci USA 89:9977–9981

    CrossRef  CAS  Google Scholar 

  • Siddell S, Sawicki D, Meyer Y, Thiel V, Sawicki S (2001) Identification of the mutations responsible for the phenotype of three MHV RNA-negative ts mutants. Adv Exp Med Biol 494:453–458

    CrossRef  CAS  Google Scholar 

  • Smith GL, Moss B (1983) Infectious poxvirus vectors have capacity for at least 25000 base pairs of foreign DNA. Gene Ther 25:21–28

    CAS  Google Scholar 

  • Summers KL, Hock BD, McKenzie JL, Hart DN (2001) Phenotypic characterization of five dendritic cell subsets in human tonsils. Am J Pathol 159:285–295

    CrossRef  CAS  Google Scholar 

  • Thiel V, Herold J, Schelle B, Siddell SG (2001a) Infectious RNA transcribed in vitro from a cDNA copy of the human coronavirus genome cloned in vaccinia virus. J Gen Virol 82:1273–1281

    CrossRef  CAS  Google Scholar 

  • Thiel V, Herold J, Schelle B, Siddell SG (2001b) Viral replicase gene products suffice for coronavirus discontinuous transcription. J Virol 75:6676–6681

    CrossRef  CAS  Google Scholar 

  • Thiel V, Karl N, Schelle B, Disterer P, Klagge I, Siddell SG (2003) Multigene RNA vector based on coronavirus transcription. J Virol 77:9790–9798

    CrossRef  CAS  Google Scholar 

  • Westaway EG, Mackenzie JM, Khromykh AA (2003) Kunjin RNA replication and applications of Kunjin replicons. Adv Virus Res 59:99–140

    CrossRef  CAS  Google Scholar 

  • Yount B, Curtis KM, Baric RS (2000) Strategy for systematic assembly of large RNA and DNA genomes: transmissible gastroenteritis virus model. J Virol 74:10600–10611

    CrossRef  CAS  Google Scholar 

  • Ziebuhr J, Snijder EJ, Gaorbalenya AE (2000) Virus-encoded proteinases and proteolytic processing in the Nidovirales. J Gen Virol 81:853–879

    CrossRef  CAS  Google Scholar 

  • Ziebuhr J, Thiel V, Gorbalenya AE (2001) The autocatalytic release of a putative RNA virus transcription factor from its polyprotein precursor involves two paralogous papain-like proteases that cleave the same peptide bond. J Biol Chem 276:33220–33232

    CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Research Department, Cantonal Hospital St. Gallen, St. Gallen, Switzerland

    V. Thiel

  2. Department of Pathology and Microbiology, School of Medical and Veterinary Sciences, University of Bristol, Bristol, UK

    S. G. Siddell

Authors
  1. V. Thiel
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. S. G. Siddell
    View author publications

    You can also search for this author in PubMed Google Scholar

Editor information

Editors and Affiliations

  1. Department of Molecular and Cell Biology, Centro Nacional de Biotecnología, Campus Universidad Autónoma, Cantoblanco, 38049, Madrid, Spain

    Luis Enjuanes

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer-Verlag

About this chapter

Cite this chapter

Thiel, V., Siddell, S.G. (2005). Reverse Genetics of Coronaviruses Using Vaccinia Virus Vectors. In: Enjuanes, L. (eds) Coronavirus Replication and Reverse Genetics. Current Topics in Microbiology and Immunology, vol 287. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26765-4_7

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/3-540-26765-4_7

  • Published: 25 October 2005

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21494-6

  • Online ISBN: 978-3-540-26765-2

  • eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Publish with us

Policies and ethics

search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

167.114.118.210

Not affiliated

Springer Nature

© 2023 Springer Nature