Skip to main content

Coronavirus Reverse Genetics and Development of Vectors for Gene Expression

Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY,volume 287)

Abstract

Knowledge of coronavirus replication, transcription, and virus-host interaction has been recently improved by engineering of coronavirus infectious cDNAs. With the transmissible gastroenteritis virus (TGEV) genome the efficient (>40 μg per 106 cells) and stable (>20 passages) expression of the foreign genes has been shown. Knowledge of the transcription mechanism in coronaviruses has been significantly increased, making possible the fine regulation of foreign gene expression. A new family of vectors based on single coronavirus genomes, in which essential genes have been deleted, has emerged including replication-competent, propagation-deficient vectors. Vector biosafety is being increased by relocating the RNA packaging signal to the position previously occupied by deleted essential genes, to prevent the rescue of fully competent viruses that might arise from recombination events with wild-type field coronaviruses. The large cloning capacity of coronaviruses (>5 kb) and the possibility of engineering the tissue and species tropism to target expression to different organs and animal species, including humans, has increased the potential of coronaviruses as vectors for vaccine development and, possibly, gene therapy.

Keywords

  • Core Sequence
  • Green Fluorescent Protein Gene
  • Mouse Hepatitis Virus
  • Feline Infectious Peritonitis
  • Infectious cDNA Clone

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  • Agapov EV, Frolov I, Lindenbach BD, Pragai BM, Schlesinger S, Rice CM (1998) Non-cytopathic Sindbis virus RNA vectors for heterologous gene expression. Proc Natl Acad Sci USA 95:12989–12994

    CAS  PubMed Central  CrossRef  PubMed  Google Scholar 

  • Almazán F, González JM, Pénzes Z, Izeta A, Calvo E, Plana-Durán J, Enjuanes L (2000) Engineering the largest RNA virus genome as an infectious bacterial artificial chromosome. Proc Natl Acad Sci USA 97:5516–5521

    PubMed Central  CrossRef  PubMed  Google Scholar 

  • Almazán F, Galán C, Enjuanes L (2004) The nucleoprotein is required for efficient coronavirus genome replication. In press

    Google Scholar 

  • Alonso S, Izeta A, Sola I, Enjuanes L (2002a) Transcription regulatory sequences and mRNA expression levels in the coronavirus transmissible gastroenteritis virus. J Virol 76:1293–1308

    CAS  PubMed Central  CrossRef  PubMed  Google Scholar 

  • Alonso S, Sola I, Teifke J, Reimann I, Izeta A, Balach M, Plana-Durán J, Moormann RJM, Enjuanes L (2002b) In vitro and in vivo expression of foreign genes by transmissible gastroenteritis coronavirus-derived minigenomes. J Gen Virol 83:567–579

    CrossRef  PubMed  Google Scholar 

  • Alonso S, Sola I, Zúñiga S, Plana-Durán J, Enjuanes L (2004) Induction of neutralizing antibodies against porcine respiratory and reproductive syndrome virus antibodies (PRRSV) ORF 5 by coronavirus derived vectors. Submitted for publication

    Google Scholar 

  • Ballesteros ML, Sánchez CM, Enjuanes L (1997) Two amino acid changes at the N-terminus of transmissible gastroenteritis coronavirus spike protein result in the loss of enteric tropism. Virology 227:378–388

    CAS  CrossRef  PubMed  Google Scholar 

  • Bonilla PJ, Gorbalenya AE, Weiss SR (1994) Mouse hepatitis virus strain A59 RNA polymerase gene ORF 1a: heterogeneity among MHV strains. Virology 198:736–740

    CAS  CrossRef  PubMed  Google Scholar 

  • Boyer JC, Bebenek K, Kunkel TA (1992) Unequal human immunodeficiency virus type 1 reverse transcriptase error rates with RNA and DNA templates. Proc Natl Acad Sci USA 89:6919–6923

    CAS  PubMed Central  CrossRef  PubMed  Google Scholar 

  • Brian DA (2001) Nidovirus genome replication and subgenomic mRNA synthesis. Pathways followed and cis-acting elements required. In: Lavi E, Weiss S and Hingley ST (eds) Nidoviruses. Plenum Press, New York Adv. Exp. Med. Biol., vol 494, pp 415–428

    CrossRef  Google Scholar 

  • Callebaut P, Correa I, Pensaert M, Jiménez G, Enjuanes L (1988) Antigenic differentiation between transmissible gastroenteritis virus of swine and a related porcine respiratory coronavirus. J Gen Virol 69:1725–1730

    CAS  CrossRef  PubMed  Google Scholar 

  • Casais R, Thiel V, Siddell SG, Cavanagh D, Britton P (2001) Reverse genetics system for the avian coronavirus infectious bronchitis virus. J Virol 75:12359–12369

    CAS  PubMed Central  CrossRef  PubMed  Google Scholar 

  • Cox E, Hooyberghs J, Pensaert MB (1990a) Sites of replication of a porcine respiratory coronavirus related to transmissible gastroenteritis virus. Res Vet Sci 48:165–169

    CAS  PubMed Central  CrossRef  PubMed  Google Scholar 

  • Cox E, Pensaert MB, Callebaut P, van Deun K (1990b) Intestinal replication of a porcine respiratory coronavirus closely related antigenically to the enteric transmissible gastroenteritis virus. Vet Microbiol 23:237–243

    CAS  PubMed Central  CrossRef  PubMed  Google Scholar 

  • Curtis KM, Yount B, Baric RS (2002) Heterologous gene expression from transmissible gastroenteritis virus replicon particles. J Virol 76:1422–1434

    CAS  PubMed Central  CrossRef  PubMed  Google Scholar 

  • das Sarma J, Fu L, Tsai JC, Weiss SR, Lavi E (2000) Demyelination determinants map to the spike glycoprotein gene of coronavirus mouse hepatitis virus. J Virol 74:9206–9213

    PubMed Central  CrossRef  PubMed  Google Scholar 

  • de Haan CAM, Volders H, Koetzner CA, Masters PS, Rottier PJM (2002) Coronavirus maintain viability despite dramatic rearrangements of the strictly conserved genome organization. J Virol 76:12491–12502

    PubMed Central  CrossRef  CAS  PubMed  Google Scholar 

  • de Haan CAM, van Genne L, Stoop JN, Volders H, Rottier JMP (2003) Coronaviruses as vectors: position dependence of foreign gene expression. J Virol 77:11312–11323

    PubMed Central  CrossRef  CAS  PubMed  Google Scholar 

  • Delmas B, Gelfi J, L'Haridon R, Vogel LK, Norén O, Laude H (1992) Aminopeptidase N is a major receptor for the enteropathogenic coronavirus TGEV. Nature 357:417–420

    CAS  PubMed Central  CrossRef  PubMed  Google Scholar 

  • de Mercoyrol L, Corda Y, Job C, Job D (1992) Accuracy of wheat-germ RNA polymerase II. General enzymatic properties and effect of template conformational transition from right-handed B-DNA to left-handed Z-DNA. Eur J Biochem 206:49–58

    CrossRef  PubMed  Google Scholar 

  • Denison MR (1999) The common cold. Rhinoviruses and coronaviruses. In: Dolin R and Wringht PF (eds) Viral infections of the respiratory tract. Marcel Dekker, Inc., New York Lung Biology in Health and Disease, vol 127, pp 253–280

    Google Scholar 

  • de Vries AAF, Glaser AL, Raamsman MJB, de Haan CAM, Sarnataro S, Godeke GJ, Rottier PJM (2000) Genetic manipulation of equine arteritis virus using full-length cDNA clones: separation of overlapping genes and expression of a foreign epitope. Virolog Coronaviridae. In: van Regenmortel MHV, Fauquet CM, Bishop DHL, Carsten EB, Estes MK, Lemon SM, McGeoch DJ, Maniloff J, Mayo MA, Pringle CR and Wickner RB (eds) Virus taxonomy. Classification and nomenclature of viruses. Academic Press, San Diego, California, pp 835–849

    Google Scholar 

  • Enjuanes L, Sola I, Almazán F, Ortego J, Izeta A, González JM, Alonso S, Sánchez-Morgado JM, Escors D, Calvo E, Riquelme C, Sánchez CM (2001) Coronavirus derived expression systems. J Biotech 88:183–204

    CAS  CrossRef  Google Scholar 

  • Escors D, Ortego J, Laude H, Enjuanes L (2001a) The membrane M protein carboxy terminus binds to transmissible gastroenteritis coronavirus core and contributes to core stability. J Virol 75:1312–1324

    CAS  PubMed Central  CrossRef  PubMed  Google Scholar 

  • Escors D, Camafeita E, Ortego J, Laude H, Enjuanes L (2001b) Organization of two transmissible gastroenteritis coronavirus membrane protein topologies within the virion and core. J Virol 75:12228–12240

    CAS  PubMed Central  CrossRef  PubMed  Google Scholar 

  • Escors D, Izeta A, Capiscol MC, Enjuanes L (2003) Transmissible gastroenteritis coronavirus packaging signal is located at the 50 end of the virus genome. J Virol 77:7890–7892

    CAS  PubMed Central  CrossRef  PubMed  Google Scholar 

  • Fischer F, Stegen CF, Koetzner CA, Masters PS (1997) Analysis of a recombinant mouse hepatitis virus expressing a foreign gene reveals a novel aspect of coronavirus transcription. J Virol 71:5148–5160

    CAS  PubMed Central  CrossRef  PubMed  Google Scholar 

  • Flanagan EB, Zamparo JM, Ball LA, Rodriguez L, Wertz GW (2001) Rearrangement of the genes of vesicular stomatitis virus eliminates clinical disease in the natural host: new strategy for vaccine development. J Virol 75:6107–6114

    CAS  PubMed Central  CrossRef  PubMed  Google Scholar 

  • Frolov I, Hoffman TA, Prágai BM, Dryga SA, Huang HV, Schlesinger S, Rice CM (1996) Alphavirus-based expression vectors: strategies and applications. Proc Natl Acad Sci USA 93:11371–11377

    CAS  PubMed Central  CrossRef  PubMed  Google Scholar 

  • Frolov I, Agapov E, Hoffman TA, Prágai BM, Lippa M, Schlesinger S, Rice CM (1999) Selection of RNA replicons capable of persistent noncytopathic replication in mammalian cells. J Virol 73:3854–3865

    CAS  PubMed Central  CrossRef  PubMed  Google Scholar 

  • Gallagher T, Buchmeier MJ (2001) Coronavirus spike proteins in viral entry and pathogenesis. Virology 279:371–374

    CAS  CrossRef  PubMed  Google Scholar 

  • González JM, Penzes Z, Almazán F, Calvo E, Enjuanes L (2002) Stabilization of a full-length infectious cDNA clone of transmissible gastroenteritis coronavirus by the insertion of an intron. J Virol 76:4655–4661

    PubMed Central  CrossRef  CAS  PubMed  Google Scholar 

  • González JM, Gomez-Puertas P, Cavanagh D, Gorbalenya AE, Enjuanes L (2003) A comparative sequence analysis to revise the current taxonomy of the family Coronaviridae. Arch Virol 148:2207–2235

    PubMed Central  CrossRef  CAS  PubMed  Google Scholar 

  • Gorbalenya AE (2001) Big nidovirus genome. When count and order of domains matter. In: Lavi E, Weiss S and Hingley ST (eds) The Nidoviruses (Coronaviruses and Arteriviruses). Kluwer Academic/Plenum Publishers, New York, vol 494, pp 1–17

    Google Scholar 

  • Haijema BJ, Volders H, Rottier PJM (2003) Switching species tropism: an effective way to manipulate the feline coronavirus genome. J Virol 77:4528–4538

    CAS  PubMed Central  CrossRef  PubMed  Google Scholar 

  • Hiscox JA, Mawditt KL, Cavanagh D, Britton P (1995) Investigation of the control of coronavirus subgenomic mRNA transcription by using T7-generated negative-sense RNA transcripts. J Virol 69:6219–6227

    CAS  PubMed Central  CrossRef  PubMed  Google Scholar 

  • Holmes KV, Enjuanes L (2003) The SARS coronavirus: a postgenomic era. Science 300:1377–1378

    CAS  CrossRef  PubMed  Google Scholar 

  • Hsue B, Masters PS (1999) Insertion of a new transcriptional unit into the genome of mouse hepatitis virus. J Virol 73:6128–6135

    CAS  PubMed Central  CrossRef  PubMed  Google Scholar 

  • Iverson LE, Rose JK (1981) Localized attenuation and discontinuous synthesis during vesicular stomatitis virus transcription. Cell 23:477–484

    CAS  CrossRef  PubMed  Google Scholar 

  • Izeta A, Smerdou C, Alonso S, Penzes Z, Méndez A, Plana-Durán J, Enjuanes L (1999) Replication and packaging of transmissible gastroenteritis coronavirusderived synthetic minigenomes. J Virol 73:1535–1545

    CAS  PubMed Central  CrossRef  PubMed  Google Scholar 

  • Jeong YS, Repass JF, Kim Y-N, Hwang S-M, Makino S (1996) Coronavirus transcription mediated by sequences flanking the transcription consensus sequence. Virology 217:311–322

    CAS  CrossRef  PubMed  Google Scholar 

  • Joo M, Makino S (1992) Mutagenic analysis of the coronavirus intergenic consensus sequence. J Virol 66:6330–6337

    CAS  PubMed Central  CrossRef  PubMed  Google Scholar 

  • Joo M, Makino S (1995) The effect of two closely inserted transcription consensus sequences on coronavirus transcription. J Virol 69:272–280

    CAS  PubMed Central  CrossRef  PubMed  Google Scholar 

  • Krishnan R, Chang RY, Brian DA (1996) Tandem placement of a coronavirus promoter results in enhanced mRNA synthesis from the downstreammost initiation site. Virology 218:400–405

    CAS  CrossRef  PubMed  Google Scholar 

  • Kubo H, Yamada YK, Taguchi F (1994) Localization of neutralizing epitopes and the receptor-binding site within the amino-terminal 330 amino acids of the murine coronavirus spike protein. J Virol 68:5403–5410

    CAS  PubMed Central  CrossRef  PubMed  Google Scholar 

  • Kuo L, Godeke G-J, Raamsman MJB, Masters PS, Rottier PJM (2000) Retargeting of coronavirus by substitution of the spike glycoprotein ectodomain: crossing the host cell species barrier. J Virol 74:1393–1406

    CAS  PubMed Central  CrossRef  PubMed  Google Scholar 

  • Lai MMC, Cavanagh D (1997) The molecular biology of coronaviruses. Adv Virus Res 48:1–100

    CAS  PubMed Central  CrossRef  PubMed  Google Scholar 

  • Lai MMC, Zhang X, Hinton D, Stohlman S (1997) Modulation of mouse hepatitis virus infection by defective-interfering RNA-mediated expression of viral proteins and cytokines. J Neurovirol 3: S33–S34

    PubMed  Google Scholar 

  • La Monica N, Yokomori K, Lai MMC (1992) Coronavirus mRNA synthesis: identification of novel transcription initiation signals which are differentially regulated by different leader sequences. Virology 188:402–407

    CrossRef  PubMed  Google Scholar 

  • Lassnig C, Sánchez CM, Enjuanes L, Muller M (2004) Obtention of transgenic mice subceptible to human coronavirus infection. Submitted for publication

    Google Scholar 

  • Lee HJ, Shieh CK, Gorbalenya AE, Koonin EV, Lamonica N, Tuler J, Bagdzhadzhyan A, Lai MMC (1991) The complete sequence (22 kilobases) of murine coronavirus gene-1 encoding the putative-327

    Google Scholar 

  • Lin YJ, Lai MMC (1993) Deletion mapping of a mouse hepatitis virus defective interfering RNA reveals the requirement of an internal and discontinuous sequence for replication. J Virol 67:6110–6118

    CAS  PubMed Central  CrossRef  PubMed  Google Scholar 

  • Luo Z, Matthews AM, Weiss SR (1999) Amino acid substitutions within the leucine zipper domain of the murine coronavirus spike protein cause defects in oligomerization and the ability to induce cell-to-cell fusion. J Virol 73:8152–8159

    CAS  PubMed Central  CrossRef  PubMed  Google Scholar 

  • Makino S, Joo M, Makino JK (1991) A system for study of coronavirus messenger RNA synthesis: a regulated, expressed subgenomic defective interfering RNA results from intergenic site insertion. J Virol 65:6031–6041

    CAS  PubMed Central  CrossRef  PubMed  Google Scholar 

  • Makino S, Joo M (1993) Effect of intergenic consensus sequence flanking sequences on coronavirus transcription. J Virol 67:3304–3311

    CAS  PubMed Central  CrossRef  PubMed  Google Scholar 

  • Marra MA, Jones SJM, Astell CR, Holt RA, Brooks-Wilson A, Butterfield YSN, Khattra J, Asano JK, Barber SA, Chan SY, Cloutier A, Coughlin SM, Freeman D, Girn N, Griffith OL, Leach SR, Mayo M, McDonald H, Montgomery SB, Pandoh PK, Petrescu AS, Robertson AG, Schein JE, Siddiqui A, Smailus DE, Stott JM, Yang GS, Plummer F, Andonov A, Artsob H, Bastien N, Bernard K, Booth TF, Bowness D, Czub M, Drebot M, Fernando L, Flick R, Garbutt M, Gray M, Grolla A, Jones S, Feldmann H, Meyers A, Kabani A, Li Y, Normand S, Stroher U, Tipples GA, Tyler S, Vogrig R, Ward D, Watson B, Brunham RC, Krajden M, Petric M, Skowronski DM, Upton C, Roper RL (2003) The genome sequence of the SARS-associated coronavirus. Science 300:1399–1404

    CAS  CrossRef  PubMed  Google Scholar 

  • Masters PS (1999) Reverse genetics of the largest RNA viruses. Adv Virus Res 53:245–264

    CAS  PubMed Central  CrossRef  PubMed  Google Scholar 

  • McGoldrick A, Lowings JP, Paton DJ (1999) Characterisation of a recent virulent transmissible gastroenteritis virus from Britain with a deleted ORF 3a. Arch Virol 144:763–770

    CAS  PubMed Central  CrossRef  PubMed  Google Scholar 

  • Méndez A, Smerdou C, Izeta A, Gebauer F, Enjuanes L (1996) Molecular characterization of transmissible gastroenteritis coronavirus defective interfering genomes: packaging and heterogeneity. Virology 217:495–507

    CrossRef  PubMed  Google Scholar 

  • Meulenberg JJM, Bos-de Ruijter JNA, van de Graaf R, Wenswoort G, Moormann RJM (1998) Infectious transcripts from cloned genome-length cDNA of porcine reproductive and respiratory syndrome virus. J Virol 72:380–387

    CAS  PubMed Central  CrossRef  PubMed  Google Scholar 

  • Molenkamp R, van Tol H, Rozier BC, van der Meer Y, Spaan WJ, Snijder EJ (2000) The arterivirus replicase is the only viral protein required for genome replication and subgenomic mRNA transcription. J Gen Virol 81:2491–2496

    CAS  CrossRef  PubMed  Google Scholar 

  • Nagy PD, Simon AE (1997) New insights into the mechanisms of RNA recombination. Virology 235:1–9

    CAS  CrossRef  PubMed  Google Scholar 

  • Navas S, Seo SH, Chua MM, das Sarma J, Lavi E, Hingley ST, Weiss SR (2001) Murine coronavirus spike protein determines the ability of the virus to replicate in the liver and cause hepatitis. J Virol 75:2452–2457

    CAS  PubMed Central  CrossRef  PubMed  Google Scholar 

  • Nelsen CJ, Murtaugh MP, Faaberg KS (1999) Porcine reproductive and respiratory syndrome virus comparison: divergent evolution on two continents. J Virol 73:270–280

    CAS  PubMed Central  CrossRef  PubMed  Google Scholar 

  • O'Connor BJ, Brian DA (1999) The major product of porcine transmissible gastroenteritis coronavirus gene 3b is an integral membrane glycoprotein of 31 kDa. Virology 256:152–161

    CAS  CrossRef  PubMed  Google Scholar 

  • O'Connor JB, Brian DA (2000) Downstream ribosomal entry for translation of coronavirus TGEV gene 3b. Virology 269:172–182

    CAS  CrossRef  PubMed  Google Scholar 

  • Olsen CW (1993) A review of feline infectious peritonitis virus: molecular biology, immunopathogenesis, clinical aspects, and vaccination. Vet Microbiol 36:1–37

    CAS  PubMed Central  CrossRef  PubMed  Google Scholar 

  • Ortego J, Escors D, Laude H, Enjuanes L (2002) Generation of a replication-competent, propagation-deficient virus vector based on the transmissible gastroenteritis coronavirus genome. J Virol 76:11518–11529

    CAS  PubMed Central  CrossRef  PubMed  Google Scholar 

  • Ortego J, Sola I, Almazan F, Ceriani JE, Riquelme C, Balasch M, Plana-Durán J, Enjuanes L (2003) Transmissible gastroenteritis coronavirus gene 7 is not essential but influences in vivo virus replication and virulence. Virology 308:13–22

    CAS  CrossRef  PubMed  Google Scholar 

  • Ortego J, DeDiego ML, Enjuanes L (2004) Novel human vector based on coronavirus genomes. Submitted for publication

    Google Scholar 

  • Ozdarendeli A, Ku S, Rochat S, Senanayake SD, Brian DA (2001) Downstream sequences influence the choice between a naturally occurring noncanonical and closely positioned upstream canonical heptameric fusion motif during bovine coronavirus subgenomic mRNA synthesis. J Virol 75:7362–7374

    CAS  PubMed Central  CrossRef  PubMed  Google Scholar 

  • Pasternak AO, van den Born E, Spaan WJM, Snijder EJ (2001) Sequence requirements for RNA strand transfer during nidovirus discontinuous subgenomic RNA synthesis. EMBO J 20:7220–7228

    CAS  PubMed Central  CrossRef  PubMed  Google Scholar 

  • Pasternak AO, van den Born E, Spaan WJM, Snijder EJ (2003) The stability of the duplex between sense and antisense transcription-regulating sequences is a crucial factor in arterivirus subgenomic mRNA synthesis. J Virol 77:1175–1183

    CAS  PubMed Central  CrossRef  PubMed  Google Scholar 

  • Pasternak AO, Spaan WJM, Snijder EJ (2004) Regulation of relative abundance of arterivirus subgenomic mRNAs. J Virol. In press

    Google Scholar 

  • Pensaert M, Callebaut P, Vergote J (1986) Isolation of a porcine respiratory, non-enteric coronavirus related to transmissible gastroenteritis. Vet Quart 8:257–260

    CAS  CrossRef  Google Scholar 

  • Pensaert MB, De Bouck P (1978) A new coronavirus-like particle associated with diarrhea in swine. Arch Virol 58:243–247

    CAS  PubMed Central  CrossRef  PubMed  Google Scholar 

  • Penzes Z, Wroe C, Brown TDK, Britton P, Cavanagh D (1996) Replication and packaging of coronavirus infectious bronchitis virus defective RNAs lacking a long open reading frame. J Virol 70:8660–8668

    CAS  PubMed Central  CrossRef  PubMed  Google Scholar 

  • Penzes Z, González JM, Calvo E, Izeta A, Smerdou C, Mendez A, Sánchez CM, Sola I, Almazán F, Enjuanes L (2001) Complete genome sequence of transmissible gastroenteritis coronavirus PUR46-MAD clone and evolution of the Purdue virus cluster. Virus Genes 23:105–118

    CAS  PubMed Central  CrossRef  PubMed  Google Scholar 

  • Phillips JJ, Chua MM, Lavi E, Weiss SR (1999) Pathogenesis of chimeric MHV4/MHV-A59 recombinant viruses: the murine coronavirus spike protein is a major determinant of neurovirulence. J Virol 73:7752–7760

    CAS  PubMed Central  CrossRef  PubMed  Google Scholar 

  • Resta S, Luby JP, Rosenfeld CD, Siegel JD (1985) Isolation and propagation of a human enteric coronavirus. Science 229:978–981

    CAS  CrossRef  PubMed  Google Scholar 

  • Riquelme C, Ortego J, Izeta A, Plana-Durán J, Enjuanes L (2004) Engineering a recombinant canine coronavirus with reduced virulence using an infectious cDNA clone of transmissible gastroenteritis coronavirus. Submitted for publication

    Google Scholar 

  • Sánchez CM, Jiménez G, Laviada MD, Correa I, Suñé C, Bullido MJ, Gebauer F, Smerdou C, Callebaut P, Escribano JM, Enjuanes L (1990) Antigenic homology among coronaviruses related to transmissible gastroenteritis virus. Virology 174:410–417

    CrossRef  PubMed  Google Scholar 

  • Sánchez CM, Gebauer F, Suñé C, Méndez A, Dopazo J, Enjuanes L (1992) Genetic evolution and tropism of transmissible gastroenteritis coronaviruses. Virology 190:92–105

    CrossRef  PubMed  Google Scholar 

  • Sánchez CM, Izeta A, Sánchez-Morgado JM, Alonso S, Sola I, Balasch M, Plana-Durán J, Enjuanes L (1999) Targeted recombination demonstrates that the spike gene of transmissible gastroenteritis coronavirus is a determinant of its enteric tropism and virulence. J Virol 73:7607–7618

    PubMed Central  CrossRef  PubMed  Google Scholar 

  • Sánchez CM, Sola I, Sánchez-Morgado JM, Enjuanes L (2004) The amino terminus of transmissible gastroenteritis coronavirus spike protein dictates the enteric tropism of the virus. In press

    Google Scholar 

  • Sawicki DL, Wang T, Sawicki SG (2001) The RNA structures engaged in replication and transcription of the A59 strain of mouse hepatitis virus. J Gen Virol 82:386–396

    CrossRef  Google Scholar 

  • Shieh C-k, Soe LH, Makino S, Chang M-F, Stohlman SA, Lai MMC (1987) The 50-end sequence of the murine coronavirus genome: implications for multiple fusion sites in leader-primed transcription. Virology 156:321–330

    CAS  CrossRef  PubMed  Google Scholar 

  • Siddell SG (1995) The Coronaviridae. Plenum Press, New York

    CrossRef  Google Scholar 

  • Snijder EJ, Bredenbeek PJ, Dobbe JC, Thiel V, Ziebuhr J, Poon LLM, Guan Y, Rozanov M, Spaan WJM, Gorbalenya AE (2003) Unique and conserved features of genome and proteome of SARS-coronavirus, and early split-off from the coronavirus group 2 lineage. J Mol Biol 331:991–1004

    CAS  PubMed Central  CrossRef  PubMed  Google Scholar 

  • Sola I, Alonso S, Zúñiga S, Balach M, Plana-Durán J, Enjuanes L (2003) Engineering transmissible gastroenteritis virus genome as an expression vector inducing lactogenic immunity. J Virol 77:4357–4369

    CAS  PubMed Central  CrossRef  PubMed  Google Scholar 

  • Sooknanan R, Howes M, Read L, Malek LT (1994) Fidelity of nucleic acid amplification with avian myeloblastosis virus reverse transcriptase and T7 RNA polymerase. BioTechniques 17:1077–1085

    CAS  PubMed  Google Scholar 

  • Stirrups K, Shaw K, Evans S, Dalton K, Casais R, Cavanagh D, Britton P (2000) Expression of reporter genes from the defective RNA CD-61 of the coronavirus infectious bronchitis virus. J Gen Virol 81:1687–1698

    CAS  CrossRef  PubMed  Google Scholar 

  • Suñé C, Jiménez G, Correa I, Bullido MJ, Gebauer F, Smerdou C, Enjuanes L (1990) Mechanisms of transmissible gastroenteritis coronavirus neutralization. Virology 177:559–569

    CrossRef  PubMed  Google Scholar 

  • Taguchi F, Kubo H, Takahashi H, Suzuki H (1995) Localization of neurovirulence determinant for rats on the S1 subunit of murine coronavirus JHMV. Virology 208:67–74

    CAS  CrossRef  PubMed  Google Scholar 

  • Thiel V, Siddell SG, Herold J (1998) Replication and transcription of HCV 229E replicons. Adv Exp Med Biol 440:109–114

    CAS  CrossRef  PubMed  Google Scholar 

  • Thiel V, Herold J, Schelle B, Siddell S (2001a) Infectious RNA transcribed in vitro from a cDNA copy of the human coronavirus genome cloned in vaccinia virus. J Gen Virol 82:1273–1281

    CAS  CrossRef  PubMed  Google Scholar 

  • Thiel V, Herold J, Schelle B, Siddell SG (2001b) Viral replicase gene products suffice for coronavirus discontinuous transcription. J Virol 75:6676–6681

    CAS  PubMed Central  CrossRef  PubMed  Google Scholar 

  • Thiel V, Ivanov KA, Putics A, Hertzig T, Schelle B, Bayer S, Wessbrich B, Snijder EJ, Rabenau H, Doerr HW, Gorbalenya AE, Ziebuhr J (2003a) Mechanisms and enzymes involved in SARS coronavirus genome expression. J Gen Virol 84:2305–2315

    CAS  CrossRef  PubMed  Google Scholar 

  • Thiel V, Karl N, Schelle B, Disterer P, Klagge I, Siddell SG (2003b) Multigene RNA vector based on coronavirus transcription. J Virol 77:9790–9798

    CAS  PubMed Central  CrossRef  PubMed  Google Scholar 

  • Thomas MJ, Platas AA, Hawley DK (1998) Transcriptional fidelity and proofreading by RNA polymerase II. Cell 93:627–637

    CAS  CrossRef  PubMed  Google Scholar 

  • USDA (2002) Part II: reference of swine health and health management in the United States, 2000. National Animal Health Monitoring System

    Google Scholar 

  • van der Most RG, De Groot RJ, Spaan WJM (1994) Subgenomic RNA synthesis directed by a synthetic defective interfering RNA of mouse hepatitis virus: a study of coronavirus transcription initiation. J Virol 68:3656–3666

    PubMed Central  CrossRef  PubMed  Google Scholar 

  • van Dinten LC, den Boon JA, Wassenaar ALM, Spaan WJM, Snijder EJ (1997) An infectious arterivirus cDNA clone: identification of a replicase point mutation that abolishes discontinuous mRNA transcription. Proc Natl Acad Sci USA 94:991–996

    PubMed Central  CrossRef  PubMed  Google Scholar 

  • van Marle G, Luytjes W, Van der Most RG, van der Straaten T, Spaan WJM (1995) Regulation of Coronavirus mRNA transcription. J Virol 69:7851–7856

    PubMed Central  CrossRef  PubMed  Google Scholar 

  • van Marle G, Dobbe JC, Gultyaev AP, Luytjes W, Spaan WJM, Snijder EJ (1999) Arterivirus discontinuous mRNA transcription is guided by base pairing between sense and antisense transcription-regulating sequences. Proc Natl Acad Sci USA 96:12056–12061

    PubMed Central  CrossRef  PubMed  Google Scholar 

  • Vaughn EM, Paul PS (1993) Antigenic and biological diversity among transmissible gastroenteritis virus isolates of swine. Vet Microbiol 36:333–347

    CAS  PubMed Central  CrossRef  PubMed  Google Scholar 

  • Vaughn RM, Halbur PG, Paul PS (1995) Sequence comparison of porcine respiratory coronaviruses isolates reveals heterogeneity in the S, 3, and 3-1 genes. J Virol 69:3176–3184

    CAS  PubMed Central  CrossRef  PubMed  Google Scholar 

  • Ward CD, Stokes MAM, Flanagan JB (1988) Direct measurement of the poliovirus RNA polymerase error frequency in vitro. J Virol 62:558–562

    CAS  PubMed Central  CrossRef  PubMed  Google Scholar 

  • Wentworth DE, Holmes KV (2001) Molecular determinants of species specificity in the coronavirus receptor aminopeptidase N (CD13): influence of N-linked glycosylation. J Virol 75:9741–9752

    CAS  PubMed Central  CrossRef  PubMed  Google Scholar 

  • Wentworth DE, Tresnan DB, Lerman I, Levis R, Shapiro LH, Holmes KV (2001) Subceptibility of transgenic mice expressing the receptor for human coronavirus-229E. In: ASV 20th Annual Meeting, University of Wisconsin-Madison, Madison, p 157

    Google Scholar 

  • Wertz GW, Perepelitsa VP, Ball LA (1998) Gene rearrangement attenuates expression and lethality of a nonsegmented negative strand RNA virus. Proc Natl Acad Sci USA 95:3501–3506

    CAS  PubMed Central  CrossRef  PubMed  Google Scholar 

  • Wesley RD, Cheung AK, Michael DM, Woods RD (1989) Nucleotide sequence of coronavirus TGEV genomic RNA: evidence of 3 mRNA species between the peplomer and matrix protein genes. Virus Res 13:87–100

    CAS  PubMed Central  CrossRef  PubMed  Google Scholar 

  • Wesley RD, Woods RD, Hill HT, Biwer JD (1990b) Evidence for a porcine respiratory coronavirus, antigenically similar to transmissible gastroenteritis virus, in the United States. J Vet Diagn Invest 2:312–317

    CAS  CrossRef  PubMed  Google Scholar 

  • Wesley RD, Woods RD, Cheung AK (1991) Genetic analysis of porcine respiratory coronavirus, an attenuated variant of transmissible gastroenteritis virus. J Virol 65:3369–3373

    CAS  PubMed Central  CrossRef  PubMed  Google Scholar 

  • Yeager CL, Ashmun RA, Williams RK, Cardellichio CB, Shapiro LH, Look AT, Holmes KV (1992) Human aminopeptidase N is a receptor for human coronavirus 229E. Nature 357:420–422

    CAS  PubMed Central  CrossRef  PubMed  Google Scholar 

  • Yount B, Curtis KM, Baric RS (2000) Strategy for systematic assembly of large RNA and DNA genomes: the transmissible gastroenteritis virus model. J Virol 74:10600–10611

    CAS  PubMed Central  CrossRef  PubMed  Google Scholar 

  • Yount B, Denison MR, Weiss SR, Baric RS (2002) Systematic assembly of a full length infectious cDNA of mouse hepatitis virus stain A59. J Virol 76:11065–11078

    CAS  PubMed Central  CrossRef  PubMed  Google Scholar 

  • Yount B, Curtis KM, Fritz EA, Hensley LE, Jahrling PB, Prentice E, Denison MR, Geisbert TW, Baric RS (2003) Reverse genetics with a full-length infectious cDNA of severe acute respiratory syndrome coronavirus. Proc Natl Acad Sci USA 100:12995–13000

    CAS  PubMed Central  CrossRef  PubMed  Google Scholar 

  • Zhang X, Hinton DR, Cua DJ, Stohlman SA, Lai MMC (1997) Expression of interferong by a coronavirus defective-interfering RNA vector and its effect on viral replication, spread, and pathogenicity. Virology 233:327–338

    CAS  CrossRef  PubMed  Google Scholar 

  • Zhang X, Hinton DR, Park S, Parra B, Liao C-L, Lai MMC (1998) Expression of hemagglutinin/esterase by a mouse hepatitis virus coronavirus defective-interfering RNA alters viral pathogenesis. Virology 242:170–183

    CAS  CrossRef  PubMed  Google Scholar 

  • Zhang X, Liu R (2000) Identification of a noncanonical signal for transcription of a novel subgenomic mRNA of mouse hepatitis virus: implication for the mechanism of coronavirus RNA transcription. Virology 278:75–85

    CAS  CrossRef  PubMed  Google Scholar 

  • Zúñiga S, Sola I, Alonso S, Enjuanes L (2004) Sequence motifs involved in the regulation of discontinuous coronavirus subgenomic RNA synthesis. J Virol 78:980–994

    PubMed Central  CrossRef  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer-Verlag

About this chapter

Cite this chapter

Enjuanes, L., Sola, I., Alonso, S., Escors, D., Zúñiga, S. (2005). Coronavirus Reverse Genetics and Development of Vectors for Gene Expression. In: Enjuanes, L. (eds) Coronavirus Replication and Reverse Genetics. Current Topics in Microbiology and Immunology, vol 287. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26765-4_6

Download citation