Coronavirus Reverse Genetics and Development of Vectors for Gene Expression

  • L. Enjuanes
  • I. Sola
  • S. Alonso
  • D. Escors
  • S. Zúñiga
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 287)


Knowledge of coronavirus replication, transcription, and virus-host interaction has been recently improved by engineering of coronavirus infectious cDNAs. With the transmissible gastroenteritis virus (TGEV) genome the efficient (>40 μg per 106 cells) and stable (>20 passages) expression of the foreign genes has been shown. Knowledge of the transcription mechanism in coronaviruses has been significantly increased, making possible the fine regulation of foreign gene expression. A new family of vectors based on single coronavirus genomes, in which essential genes have been deleted, has emerged including replication-competent, propagation-deficient vectors. Vector biosafety is being increased by relocating the RNA packaging signal to the position previously occupied by deleted essential genes, to prevent the rescue of fully competent viruses that might arise from recombination events with wild-type field coronaviruses. The large cloning capacity of coronaviruses (>5 kb) and the possibility of engineering the tissue and species tropism to target expression to different organs and animal species, including humans, has increased the potential of coronaviruses as vectors for vaccine development and, possibly, gene therapy.


Core Sequence Green Fluorescent Protein Gene Mouse Hepatitis Virus Feline Infectious Peritonitis Infectious cDNA Clone 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agapov EV, Frolov I, Lindenbach BD, Pragai BM, Schlesinger S, Rice CM (1998) Non-cytopathic Sindbis virus RNA vectors for heterologous gene expression. Proc Natl Acad Sci USA 95:12989–12994CrossRefPubMedGoogle Scholar
  2. Almazán F, González JM, Pénzes Z, Izeta A, Calvo E, Plana-Durán J, Enjuanes L (2000) Engineering the largest RNA virus genome as an infectious bacterial artificial chromosome. Proc Natl Acad Sci USA 97:5516–5521CrossRefPubMedGoogle Scholar
  3. Almazán F, Galán C, Enjuanes L (2004) The nucleoprotein is required for efficient coronavirus genome replication. In pressGoogle Scholar
  4. Alonso S, Izeta A, Sola I, Enjuanes L (2002a) Transcription regulatory sequences and mRNA expression levels in the coronavirus transmissible gastroenteritis virus. J Virol 76:1293–1308PubMedGoogle Scholar
  5. Alonso S, Sola I, Teifke J, Reimann I, Izeta A, Balach M, Plana-Durán J, Moormann RJM, Enjuanes L (2002b) In vitro and in vivo expression of foreign genes by transmissible gastroenteritis coronavirus-derived minigenomes. J Gen Virol 83:567–579Google Scholar
  6. Alonso S, Sola I, Zúñiga S, Plana-Durán J, Enjuanes L (2004) Induction of neutralizing antibodies against porcine respiratory and reproductive syndrome virus antibodies (PRRSV) ORF 5 by coronavirus derived vectors. Submitted for publicationGoogle Scholar
  7. Ballesteros ML, Sánchez CM, Enjuanes L (1997) Two amino acid changes at the N-terminus of transmissible gastroenteritis coronavirus spike protein result in the loss of enteric tropism. Virology 227:378–388Google Scholar
  8. Bonilla PJ, Gorbalenya AE, Weiss SR (1994) Mouse hepatitis virus strain A59 RNA polymerase gene ORF 1a: heterogeneity among MHV strains. Virology 198:736–740Google Scholar
  9. Boyer JC, Bebenek K, Kunkel TA (1992) Unequal human immunodeficiency virus type 1 reverse transcriptase error rates with RNA and DNA templates. Proc Natl Acad Sci USA 89:6919–6923PubMedGoogle Scholar
  10. Brian DA (2001) Nidovirus genome replication and subgenomic mRNA synthesis. Pathways followed and cis-acting elements required. In: Lavi E, Weiss S and Hingley ST (eds) Nidoviruses. Plenum Press, New York Adv. Exp. Med. Biol., vol 494, pp 415–428Google Scholar
  11. Callebaut P, Correa I, Pensaert M, Jiménez G, Enjuanes L (1988) Antigenic differentiation between transmissible gastroenteritis virus of swine and a related porcine respiratory coronavirus. J Gen Virol 69:1725–1730PubMedGoogle Scholar
  12. Casais R, Thiel V, Siddell SG, Cavanagh D, Britton P (2001) Reverse genetics system for the avian coronavirus infectious bronchitis virus. J Virol 75:12359–12369CrossRefPubMedGoogle Scholar
  13. Cox E, Hooyberghs J, Pensaert MB (1990a) Sites of replication of a porcine respiratory coronavirus related to transmissible gastroenteritis virus. Res Vet Sci 48:165–169PubMedGoogle Scholar
  14. Cox E, Pensaert MB, Callebaut P, van Deun K (1990b) Intestinal replication of a porcine respiratory coronavirus closely related antigenically to the enteric transmissible gastroenteritis virus. Vet Microbiol 23:237–243CrossRefPubMedGoogle Scholar
  15. Curtis KM, Yount B, Baric RS (2002) Heterologous gene expression from transmissible gastroenteritis virus replicon particles. J Virol 76:1422–1434PubMedGoogle Scholar
  16. das Sarma J, Fu L, Tsai JC, Weiss SR, Lavi E (2000) Demyelination determinants map to the spike glycoprotein gene of coronavirus mouse hepatitis virus. J Virol 74:9206–9213Google Scholar
  17. de Haan CAM, Volders H, Koetzner CA, Masters PS, Rottier PJM (2002) Coronavirus maintain viability despite dramatic rearrangements of the strictly conserved genome organization. J Virol 76:12491–12502CrossRefPubMedGoogle Scholar
  18. de Haan CAM, van Genne L, Stoop JN, Volders H, Rottier JMP (2003) Coronaviruses as vectors: position dependence of foreign gene expression. J Virol 77:11312–11323CrossRefPubMedGoogle Scholar
  19. Delmas B, Gelfi J, L'Haridon R, Vogel LK, Norén O, Laude H (1992) Aminopeptidase N is a major receptor for the enteropathogenic coronavirus TGEV. Nature 357:417–420CrossRefPubMedGoogle Scholar
  20. de Mercoyrol L, Corda Y, Job C, Job D (1992) Accuracy of wheat-germ RNA polymerase II. General enzymatic properties and effect of template conformational transition from right-handed B-DNA to left-handed Z-DNA. Eur J Biochem 206:49–58CrossRefPubMedGoogle Scholar
  21. Denison MR (1999) The common cold. Rhinoviruses and coronaviruses. In: Dolin R and Wringht PF (eds) Viral infections of the respiratory tract. Marcel Dekker, Inc., New York Lung Biology in Health and Disease, vol 127, pp 253–280Google Scholar
  22. de Vries AAF, Glaser AL, Raamsman MJB, de Haan CAM, Sarnataro S, Godeke GJ, Rottier PJM (2000) Genetic manipulation of equine arteritis virus using full-length cDNA clones: separation of overlapping genes and expression of a foreign epitope. Virolog Coronaviridae. In: van Regenmortel MHV, Fauquet CM, Bishop DHL, Carsten EB, Estes MK, Lemon SM, McGeoch DJ, Maniloff J, Mayo MA, Pringle CR and Wickner RB (eds) Virus taxonomy. Classification and nomenclature of viruses. Academic Press, San Diego, California, pp 835–849Google Scholar
  23. Enjuanes L, Sola I, Almazán F, Ortego J, Izeta A, González JM, Alonso S, Sánchez-Morgado JM, Escors D, Calvo E, Riquelme C, Sánchez CM (2001) Coronavirus derived expression systems. J Biotech 88:183–204CrossRefGoogle Scholar
  24. Escors D, Ortego J, Laude H, Enjuanes L (2001a) The membrane M protein carboxy terminus binds to transmissible gastroenteritis coronavirus core and contributes to core stability. J Virol 75:1312–1324CrossRefPubMedGoogle Scholar
  25. Escors D, Camafeita E, Ortego J, Laude H, Enjuanes L (2001b) Organization of two transmissible gastroenteritis coronavirus membrane protein topologies within the virion and core. J Virol 75:12228–12240CrossRefPubMedGoogle Scholar
  26. Escors D, Izeta A, Capiscol MC, Enjuanes L (2003) Transmissible gastroenteritis coronavirus packaging signal is located at the 50 end of the virus genome. J Virol 77:7890–7892CrossRefPubMedGoogle Scholar
  27. Fischer F, Stegen CF, Koetzner CA, Masters PS (1997) Analysis of a recombinant mouse hepatitis virus expressing a foreign gene reveals a novel aspect of coronavirus transcription. J Virol 71:5148–5160PubMedGoogle Scholar
  28. Flanagan EB, Zamparo JM, Ball LA, Rodriguez L, Wertz GW (2001) Rearrangement of the genes of vesicular stomatitis virus eliminates clinical disease in the natural host: new strategy for vaccine development. J Virol 75:6107–6114CrossRefPubMedGoogle Scholar
  29. Frolov I, Hoffman TA, Prágai BM, Dryga SA, Huang HV, Schlesinger S, Rice CM (1996) Alphavirus-based expression vectors: strategies and applications. Proc Natl Acad Sci USA 93:11371–11377CrossRefPubMedGoogle Scholar
  30. Frolov I, Agapov E, Hoffman TA, Prágai BM, Lippa M, Schlesinger S, Rice CM (1999) Selection of RNA replicons capable of persistent noncytopathic replication in mammalian cells. J Virol 73:3854–3865PubMedGoogle Scholar
  31. Gallagher T, Buchmeier MJ (2001) Coronavirus spike proteins in viral entry and pathogenesis. Virology 279:371–374CrossRefPubMedGoogle Scholar
  32. González JM, Penzes Z, Almazán F, Calvo E, Enjuanes L (2002) Stabilization of a full-length infectious cDNA clone of transmissible gastroenteritis coronavirus by the insertion of an intron. J Virol 76:4655–4661CrossRefPubMedGoogle Scholar
  33. González JM, Gomez-Puertas P, Cavanagh D, Gorbalenya AE, Enjuanes L (2003) A comparative sequence analysis to revise the current taxonomy of the family Coronaviridae. Arch Virol 148:2207–2235CrossRefPubMedGoogle Scholar
  34. Gorbalenya AE (2001) Big nidovirus genome. When count and order of domains matter. In: Lavi E, Weiss S and Hingley ST (eds) The Nidoviruses (Coronaviruses and Arteriviruses). Kluwer Academic/Plenum Publishers, New York, vol 494, pp 1–17Google Scholar
  35. Haijema BJ, Volders H, Rottier PJM (2003) Switching species tropism: an effective way to manipulate the feline coronavirus genome. J Virol 77:4528–4538CrossRefPubMedGoogle Scholar
  36. Hiscox JA, Mawditt KL, Cavanagh D, Britton P (1995) Investigation of the control of coronavirus subgenomic mRNA transcription by using T7-generated negative-sense RNA transcripts. J Virol 69:6219–6227PubMedGoogle Scholar
  37. Holmes KV, Enjuanes L (2003) The SARS coronavirus: a postgenomic era. Science 300:1377–1378CrossRefPubMedGoogle Scholar
  38. Hsue B, Masters PS (1999) Insertion of a new transcriptional unit into the genome of mouse hepatitis virus. J Virol 73:6128–6135PubMedGoogle Scholar
  39. Iverson LE, Rose JK (1981) Localized attenuation and discontinuous synthesis during vesicular stomatitis virus transcription. Cell 23:477–484CrossRefPubMedGoogle Scholar
  40. Izeta A, Smerdou C, Alonso S, Penzes Z, Méndez A, Plana-Durán J, Enjuanes L (1999) Replication and packaging of transmissible gastroenteritis coronavirusderived synthetic minigenomes. J Virol 73:1535–1545PubMedGoogle Scholar
  41. Jeong YS, Repass JF, Kim Y-N, Hwang S-M, Makino S (1996) Coronavirus transcription mediated by sequences flanking the transcription consensus sequence. Virology 217:311–322CrossRefPubMedGoogle Scholar
  42. Joo M, Makino S (1992) Mutagenic analysis of the coronavirus intergenic consensus sequence. J Virol 66:6330–6337PubMedGoogle Scholar
  43. Joo M, Makino S (1995) The effect of two closely inserted transcription consensus sequences on coronavirus transcription. J Virol 69:272–280PubMedGoogle Scholar
  44. Krishnan R, Chang RY, Brian DA (1996) Tandem placement of a coronavirus promoter results in enhanced mRNA synthesis from the downstreammost initiation site. Virology 218:400–405CrossRefPubMedGoogle Scholar
  45. Kubo H, Yamada YK, Taguchi F (1994) Localization of neutralizing epitopes and the receptor-binding site within the amino-terminal 330 amino acids of the murine coronavirus spike protein. J Virol 68:5403–5410PubMedGoogle Scholar
  46. Kuo L, Godeke G-J, Raamsman MJB, Masters PS, Rottier PJM (2000) Retargeting of coronavirus by substitution of the spike glycoprotein ectodomain: crossing the host cell species barrier. J Virol 74:1393–1406CrossRefPubMedGoogle Scholar
  47. Lai MMC, Cavanagh D (1997) The molecular biology of coronaviruses. Adv Virus Res 48:1–100CrossRefPubMedGoogle Scholar
  48. Lai MMC, Zhang X, Hinton D, Stohlman S (1997) Modulation of mouse hepatitis virus infection by defective-interfering RNA-mediated expression of viral proteins and cytokines. J Neurovirol 3: S33–S34PubMedGoogle Scholar
  49. La Monica N, Yokomori K, Lai MMC (1992) Coronavirus mRNA synthesis: identification of novel transcription initiation signals which are differentially regulated by different leader sequences. Virology 188:402–407CrossRefPubMedGoogle Scholar
  50. Lassnig C, Sánchez CM, Enjuanes L, Muller M (2004) Obtention of transgenic mice subceptible to human coronavirus infection. Submitted for publicationGoogle Scholar
  51. Lee HJ, Shieh CK, Gorbalenya AE, Koonin EV, Lamonica N, Tuler J, Bagdzhadzhyan A, Lai MMC (1991) The complete sequence (22 kilobases) of murine coronavirus gene-1 encoding the putative-327Google Scholar
  52. Lin YJ, Lai MMC (1993) Deletion mapping of a mouse hepatitis virus defective interfering RNA reveals the requirement of an internal and discontinuous sequence for replication. J Virol 67:6110–6118PubMedGoogle Scholar
  53. Luo Z, Matthews AM, Weiss SR (1999) Amino acid substitutions within the leucine zipper domain of the murine coronavirus spike protein cause defects in oligomerization and the ability to induce cell-to-cell fusion. J Virol 73:8152–8159PubMedGoogle Scholar
  54. Makino S, Joo M, Makino JK (1991) A system for study of coronavirus messenger RNA synthesis: a regulated, expressed subgenomic defective interfering RNA results from intergenic site insertion. J Virol 65:6031–6041PubMedGoogle Scholar
  55. Makino S, Joo M (1993) Effect of intergenic consensus sequence flanking sequences on coronavirus transcription. J Virol 67:3304–3311PubMedGoogle Scholar
  56. Marra MA, Jones SJM, Astell CR, Holt RA, Brooks-Wilson A, Butterfield YSN, Khattra J, Asano JK, Barber SA, Chan SY, Cloutier A, Coughlin SM, Freeman D, Girn N, Griffith OL, Leach SR, Mayo M, McDonald H, Montgomery SB, Pandoh PK, Petrescu AS, Robertson AG, Schein JE, Siddiqui A, Smailus DE, Stott JM, Yang GS, Plummer F, Andonov A, Artsob H, Bastien N, Bernard K, Booth TF, Bowness D, Czub M, Drebot M, Fernando L, Flick R, Garbutt M, Gray M, Grolla A, Jones S, Feldmann H, Meyers A, Kabani A, Li Y, Normand S, Stroher U, Tipples GA, Tyler S, Vogrig R, Ward D, Watson B, Brunham RC, Krajden M, Petric M, Skowronski DM, Upton C, Roper RL (2003) The genome sequence of the SARS-associated coronavirus. Science 300:1399–1404CrossRefPubMedGoogle Scholar
  57. Masters PS (1999) Reverse genetics of the largest RNA viruses. Adv Virus Res 53:245–264PubMedGoogle Scholar
  58. McGoldrick A, Lowings JP, Paton DJ (1999) Characterisation of a recent virulent transmissible gastroenteritis virus from Britain with a deleted ORF 3a. Arch Virol 144:763–770CrossRefPubMedGoogle Scholar
  59. Méndez A, Smerdou C, Izeta A, Gebauer F, Enjuanes L (1996) Molecular characterization of transmissible gastroenteritis coronavirus defective interfering genomes: packaging and heterogeneity. Virology 217:495–507CrossRefPubMedGoogle Scholar
  60. Meulenberg JJM, Bos-de Ruijter JNA, van de Graaf R, Wenswoort G, Moormann RJM (1998) Infectious transcripts from cloned genome-length cDNA of porcine reproductive and respiratory syndrome virus. J Virol 72:380–387PubMedGoogle Scholar
  61. Molenkamp R, van Tol H, Rozier BC, van der Meer Y, Spaan WJ, Snijder EJ (2000) The arterivirus replicase is the only viral protein required for genome replication and subgenomic mRNA transcription. J Gen Virol 81:2491–2496PubMedGoogle Scholar
  62. Nagy PD, Simon AE (1997) New insights into the mechanisms of RNA recombination. Virology 235:1–9CrossRefPubMedGoogle Scholar
  63. Navas S, Seo SH, Chua MM, das Sarma J, Lavi E, Hingley ST, Weiss SR (2001) Murine coronavirus spike protein determines the ability of the virus to replicate in the liver and cause hepatitis. J Virol 75:2452–2457Google Scholar
  64. Nelsen CJ, Murtaugh MP, Faaberg KS (1999) Porcine reproductive and respiratory syndrome virus comparison: divergent evolution on two continents. J Virol 73:270–280PubMedGoogle Scholar
  65. O'Connor BJ, Brian DA (1999) The major product of porcine transmissible gastroenteritis coronavirus gene 3b is an integral membrane glycoprotein of 31 kDa. Virology 256:152–161CrossRefPubMedGoogle Scholar
  66. O'Connor JB, Brian DA (2000) Downstream ribosomal entry for translation of coronavirus TGEV gene 3b. Virology 269:172–182CrossRefPubMedGoogle Scholar
  67. Olsen CW (1993) A review of feline infectious peritonitis virus: molecular biology, immunopathogenesis, clinical aspects, and vaccination. Vet Microbiol 36:1–37CrossRefPubMedGoogle Scholar
  68. Ortego J, Escors D, Laude H, Enjuanes L (2002) Generation of a replication-competent, propagation-deficient virus vector based on the transmissible gastroenteritis coronavirus genome. J Virol 76:11518–11529CrossRefPubMedGoogle Scholar
  69. Ortego J, Sola I, Almazan F, Ceriani JE, Riquelme C, Balasch M, Plana-Durán J, Enjuanes L (2003) Transmissible gastroenteritis coronavirus gene 7 is not essential but influences in vivo virus replication and virulence. Virology 308:13–22CrossRefPubMedGoogle Scholar
  70. Ortego J, DeDiego ML, Enjuanes L (2004) Novel human vector based on coronavirus genomes. Submitted for publicationGoogle Scholar
  71. Ozdarendeli A, Ku S, Rochat S, Senanayake SD, Brian DA (2001) Downstream sequences influence the choice between a naturally occurring noncanonical and closely positioned upstream canonical heptameric fusion motif during bovine coronavirus subgenomic mRNA synthesis. J Virol 75:7362–7374CrossRefPubMedGoogle Scholar
  72. Pasternak AO, van den Born E, Spaan WJM, Snijder EJ (2001) Sequence requirements for RNA strand transfer during nidovirus discontinuous subgenomic RNA synthesis. EMBO J 20:7220–7228CrossRefPubMedGoogle Scholar
  73. Pasternak AO, van den Born E, Spaan WJM, Snijder EJ (2003) The stability of the duplex between sense and antisense transcription-regulating sequences is a crucial factor in arterivirus subgenomic mRNA synthesis. J Virol 77:1175–1183CrossRefPubMedGoogle Scholar
  74. Pasternak AO, Spaan WJM, Snijder EJ (2004) Regulation of relative abundance of arterivirus subgenomic mRNAs. J Virol. In pressGoogle Scholar
  75. Pensaert M, Callebaut P, Vergote J (1986) Isolation of a porcine respiratory, non-enteric coronavirus related to transmissible gastroenteritis. Vet Quart 8:257–260Google Scholar
  76. Pensaert MB, De Bouck P (1978) A new coronavirus-like particle associated with diarrhea in swine. Arch Virol 58:243–247CrossRefPubMedGoogle Scholar
  77. Penzes Z, Wroe C, Brown TDK, Britton P, Cavanagh D (1996) Replication and packaging of coronavirus infectious bronchitis virus defective RNAs lacking a long open reading frame. J Virol 70:8660–8668PubMedGoogle Scholar
  78. Penzes Z, González JM, Calvo E, Izeta A, Smerdou C, Mendez A, Sánchez CM, Sola I, Almazán F, Enjuanes L (2001) Complete genome sequence of transmissible gastroenteritis coronavirus PUR46-MAD clone and evolution of the Purdue virus cluster. Virus Genes 23:105–118CrossRefPubMedGoogle Scholar
  79. Phillips JJ, Chua MM, Lavi E, Weiss SR (1999) Pathogenesis of chimeric MHV4/MHV-A59 recombinant viruses: the murine coronavirus spike protein is a major determinant of neurovirulence. J Virol 73:7752–7760PubMedGoogle Scholar
  80. Resta S, Luby JP, Rosenfeld CD, Siegel JD (1985) Isolation and propagation of a human enteric coronavirus. Science 229:978–981PubMedGoogle Scholar
  81. Riquelme C, Ortego J, Izeta A, Plana-Durán J, Enjuanes L (2004) Engineering a recombinant canine coronavirus with reduced virulence using an infectious cDNA clone of transmissible gastroenteritis coronavirus. Submitted for publicationGoogle Scholar
  82. Sánchez CM, Jiménez G, Laviada MD, Correa I, Suñé C, Bullido MJ, Gebauer F, Smerdou C, Callebaut P, Escribano JM, Enjuanes L (1990) Antigenic homology among coronaviruses related to transmissible gastroenteritis virus. Virology 174:410–417CrossRefPubMedGoogle Scholar
  83. Sánchez CM, Gebauer F, Suñé C, Méndez A, Dopazo J, Enjuanes L (1992) Genetic evolution and tropism of transmissible gastroenteritis coronaviruses. Virology 190:92–105CrossRefPubMedGoogle Scholar
  84. Sánchez CM, Izeta A, Sánchez-Morgado JM, Alonso S, Sola I, Balasch M, Plana-Durán J, Enjuanes L (1999) Targeted recombination demonstrates that the spike gene of transmissible gastroenteritis coronavirus is a determinant of its enteric tropism and virulence. J Virol 73:7607–7618PubMedGoogle Scholar
  85. Sánchez CM, Sola I, Sánchez-Morgado JM, Enjuanes L (2004) The amino terminus of transmissible gastroenteritis coronavirus spike protein dictates the enteric tropism of the virus. In pressGoogle Scholar
  86. Sawicki DL, Wang T, Sawicki SG (2001) The RNA structures engaged in replication and transcription of the A59 strain of mouse hepatitis virus. J Gen Virol 82:386–396Google Scholar
  87. Shieh C-k, Soe LH, Makino S, Chang M-F, Stohlman SA, Lai MMC (1987) The 50-end sequence of the murine coronavirus genome: implications for multiple fusion sites in leader-primed transcription. Virology 156:321–330CrossRefPubMedGoogle Scholar
  88. Siddell SG (1995) The Coronaviridae. Plenum Press, New YorkGoogle Scholar
  89. Snijder EJ, Bredenbeek PJ, Dobbe JC, Thiel V, Ziebuhr J, Poon LLM, Guan Y, Rozanov M, Spaan WJM, Gorbalenya AE (2003) Unique and conserved features of genome and proteome of SARS-coronavirus, and early split-off from the coronavirus group 2 lineage. J Mol Biol 331:991–1004CrossRefPubMedGoogle Scholar
  90. Sola I, Alonso S, Zúñiga S, Balach M, Plana-Durán J, Enjuanes L (2003) Engineering transmissible gastroenteritis virus genome as an expression vector inducing lactogenic immunity. J Virol 77:4357–4369CrossRefPubMedGoogle Scholar
  91. Sooknanan R, Howes M, Read L, Malek LT (1994) Fidelity of nucleic acid amplification with avian myeloblastosis virus reverse transcriptase and T7 RNA polymerase. BioTechniques 17:1077–1085PubMedGoogle Scholar
  92. Stirrups K, Shaw K, Evans S, Dalton K, Casais R, Cavanagh D, Britton P (2000) Expression of reporter genes from the defective RNA CD-61 of the coronavirus infectious bronchitis virus. J Gen Virol 81:1687–1698PubMedGoogle Scholar
  93. Suñé C, Jiménez G, Correa I, Bullido MJ, Gebauer F, Smerdou C, Enjuanes L (1990) Mechanisms of transmissible gastroenteritis coronavirus neutralization. Virology 177:559–569CrossRefPubMedGoogle Scholar
  94. Taguchi F, Kubo H, Takahashi H, Suzuki H (1995) Localization of neurovirulence determinant for rats on the S1 subunit of murine coronavirus JHMV. Virology 208:67–74CrossRefPubMedGoogle Scholar
  95. Thiel V, Siddell SG, Herold J (1998) Replication and transcription of HCV 229E replicons. Adv Exp Med Biol 440:109–114PubMedGoogle Scholar
  96. Thiel V, Herold J, Schelle B, Siddell S (2001a) Infectious RNA transcribed in vitro from a cDNA copy of the human coronavirus genome cloned in vaccinia virus. J Gen Virol 82:1273–1281PubMedGoogle Scholar
  97. Thiel V, Herold J, Schelle B, Siddell SG (2001b) Viral replicase gene products suffice for coronavirus discontinuous transcription. J Virol 75:6676–6681CrossRefPubMedGoogle Scholar
  98. Thiel V, Ivanov KA, Putics A, Hertzig T, Schelle B, Bayer S, Wessbrich B, Snijder EJ, Rabenau H, Doerr HW, Gorbalenya AE, Ziebuhr J (2003a) Mechanisms and enzymes involved in SARS coronavirus genome expression. J Gen Virol 84:2305–2315CrossRefPubMedGoogle Scholar
  99. Thiel V, Karl N, Schelle B, Disterer P, Klagge I, Siddell SG (2003b) Multigene RNA vector based on coronavirus transcription. J Virol 77:9790–9798CrossRefPubMedGoogle Scholar
  100. Thomas MJ, Platas AA, Hawley DK (1998) Transcriptional fidelity and proofreading by RNA polymerase II. Cell 93:627–637CrossRefPubMedGoogle Scholar
  101. USDA (2002) Part II: reference of swine health and health management in the United States, 2000. National Animal Health Monitoring SystemGoogle Scholar
  102. van der Most RG, De Groot RJ, Spaan WJM (1994) Subgenomic RNA synthesis directed by a synthetic defective interfering RNA of mouse hepatitis virus: a study of coronavirus transcription initiation. J Virol 68:3656–3666PubMedGoogle Scholar
  103. van Dinten LC, den Boon JA, Wassenaar ALM, Spaan WJM, Snijder EJ (1997) An infectious arterivirus cDNA clone: identification of a replicase point mutation that abolishes discontinuous mRNA transcription. Proc Natl Acad Sci USA 94:991–996CrossRefPubMedGoogle Scholar
  104. van Marle G, Luytjes W, Van der Most RG, van der Straaten T, Spaan WJM (1995) Regulation of Coronavirus mRNA transcription. J Virol 69:7851–7856PubMedGoogle Scholar
  105. van Marle G, Dobbe JC, Gultyaev AP, Luytjes W, Spaan WJM, Snijder EJ (1999) Arterivirus discontinuous mRNA transcription is guided by base pairing between sense and antisense transcription-regulating sequences. Proc Natl Acad Sci USA 96:12056–12061CrossRefPubMedGoogle Scholar
  106. Vaughn EM, Paul PS (1993) Antigenic and biological diversity among transmissible gastroenteritis virus isolates of swine. Vet Microbiol 36:333–347CrossRefPubMedGoogle Scholar
  107. Vaughn RM, Halbur PG, Paul PS (1995) Sequence comparison of porcine respiratory coronaviruses isolates reveals heterogeneity in the S, 3, and 3-1 genes. J Virol 69:3176–3184PubMedGoogle Scholar
  108. Ward CD, Stokes MAM, Flanagan JB (1988) Direct measurement of the poliovirus RNA polymerase error frequency in vitro. J Virol 62:558–562PubMedGoogle Scholar
  109. Wentworth DE, Holmes KV (2001) Molecular determinants of species specificity in the coronavirus receptor aminopeptidase N (CD13): influence of N-linked glycosylation. J Virol 75:9741–9752CrossRefPubMedGoogle Scholar
  110. Wentworth DE, Tresnan DB, Lerman I, Levis R, Shapiro LH, Holmes KV (2001) Subceptibility of transgenic mice expressing the receptor for human coronavirus-229E. In: ASV 20th Annual Meeting, University of Wisconsin-Madison, Madison, p 157Google Scholar
  111. Wertz GW, Perepelitsa VP, Ball LA (1998) Gene rearrangement attenuates expression and lethality of a nonsegmented negative strand RNA virus. Proc Natl Acad Sci USA 95:3501–3506CrossRefPubMedGoogle Scholar
  112. Wesley RD, Cheung AK, Michael DM, Woods RD (1989) Nucleotide sequence of coronavirus TGEV genomic RNA: evidence of 3 mRNA species between the peplomer and matrix protein genes. Virus Res 13:87–100CrossRefPubMedGoogle Scholar
  113. Wesley RD, Woods RD, Hill HT, Biwer JD (1990b) Evidence for a porcine respiratory coronavirus, antigenically similar to transmissible gastroenteritis virus, in the United States. J Vet Diagn Invest 2:312–317PubMedGoogle Scholar
  114. Wesley RD, Woods RD, Cheung AK (1991) Genetic analysis of porcine respiratory coronavirus, an attenuated variant of transmissible gastroenteritis virus. J Virol 65:3369–3373PubMedGoogle Scholar
  115. Yeager CL, Ashmun RA, Williams RK, Cardellichio CB, Shapiro LH, Look AT, Holmes KV (1992) Human aminopeptidase N is a receptor for human coronavirus 229E. Nature 357:420–422CrossRefPubMedGoogle Scholar
  116. Yount B, Curtis KM, Baric RS (2000) Strategy for systematic assembly of large RNA and DNA genomes: the transmissible gastroenteritis virus model. J Virol 74:10600–10611CrossRefPubMedGoogle Scholar
  117. Yount B, Denison MR, Weiss SR, Baric RS (2002) Systematic assembly of a full length infectious cDNA of mouse hepatitis virus stain A59. J Virol 76:11065–11078CrossRefPubMedGoogle Scholar
  118. Yount B, Curtis KM, Fritz EA, Hensley LE, Jahrling PB, Prentice E, Denison MR, Geisbert TW, Baric RS (2003) Reverse genetics with a full-length infectious cDNA of severe acute respiratory syndrome coronavirus. Proc Natl Acad Sci USA 100:12995–13000CrossRefPubMedGoogle Scholar
  119. Zhang X, Hinton DR, Cua DJ, Stohlman SA, Lai MMC (1997) Expression of interferong by a coronavirus defective-interfering RNA vector and its effect on viral replication, spread, and pathogenicity. Virology 233:327–338CrossRefPubMedGoogle Scholar
  120. Zhang X, Hinton DR, Park S, Parra B, Liao C-L, Lai MMC (1998) Expression of hemagglutinin/esterase by a mouse hepatitis virus coronavirus defective-interfering RNA alters viral pathogenesis. Virology 242:170–183CrossRefPubMedGoogle Scholar
  121. Zhang X, Liu R (2000) Identification of a noncanonical signal for transcription of a novel subgenomic mRNA of mouse hepatitis virus: implication for the mechanism of coronavirus RNA transcription. Virology 278:75–85CrossRefPubMedGoogle Scholar
  122. Zúñiga S, Sola I, Alonso S, Enjuanes L (2004) Sequence motifs involved in the regulation of discontinuous coronavirus subgenomic RNA synthesis. J Virol 78:980–994CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • L. Enjuanes
    • 1
  • I. Sola
    • 1
  • S. Alonso
    • 1
  • D. Escors
    • 1
  • S. Zúñiga
    • 1
  1. 1.Department of Molecular and Cell Biology, Centro Nacional de BiotecnologíaCSICCantoblanco, MadridSpain

Personalised recommendations