Skip to main content

Advertisement

SpringerLink
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
Book cover

Coronavirus Replication and Reverse Genetics pp 95–131Cite as

  1. Home
  2. Coronavirus Replication and Reverse Genetics
  3. Chapter
Viral and Cellular Proteins Involved in Coronavirus Replication

Viral and Cellular Proteins Involved in Coronavirus Replication

  • S. T. Shi2 &
  • M. M. C. Lai2 
  • Chapter
  • First Online: 25 October 2005
  • 12k Accesses

  • 75 Citations

Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY,volume 287)

Abstract

As the largest RNA virus, coronavirus replication employs complex mechanisms and involves various viral and cellular proteins. The first open reading frame of the coronavirus genome encodes a large polyprotein, which is processed into a number of viral proteins required for viral replication directly or indirectly. These proteins include the RNA-dependent RNA polymerase (RdRp), RNA helicase, proteases, metal-binding proteins, and a number of other proteins of unknown function. Genetic studies suggest that most of these proteins are involved in viral RNA replication. In addition to viral proteins, several cellular proteins, such as heterogeneous nuclear ribonucleoprotein (hnRNP) A1, polypyrimidine-tract-binding (PTB) protein, poly(A)-binding protein (PABP), and mitochondrial aconitase (m-aconitase), have been identified to interact with the critical cis-acting elements of coronavirus replication. Like many other RNA viruses, coronavirus may subvert these cellular proteins from cellular RNA processing or translation machineries to play a role in viral replication.

Keywords

  • Mouse Hepatitis Virus
  • Equine Arteritis Virus
  • Murine Coronavirus
  • Mouse Hepatitis Virus Strain
  • Coronavirus Replication

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Chapter PDF

Download to read the full chapter text

References

  • Ahola T, den Boon JA, Ahlquist P (2000) Helicase and capping enzyme active site mutations in brome mosaic virus protein 1a cause defects in template recruitment, negative-strand RNA synthesis, and viral RNA capping. J Virol 74:8803–8811

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker SC, Lai MM (1990) An in vitro system for the leader-primed transcription of coronavirus mRNAs. EMBO J 9:4173–4179

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker SC, Shieh CK, Soe LH, Chang MF, Vannier DM, Lai MM (1989) Identification of a domain required for autoproteolytic cleavage of murine coronavirus gene A polyprotein. J Virol 63:3693–3699

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker SC, Yokomori K, Dong S, Carlisle R, Gorbalenya AE, Koonin EV, Lai MM (1993) Identification of the catalytic sites of a papain-like cysteine proteinase of murine coronavirus. J Virol 67:6056–6063

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker TA, Bell SP (1998) Polymerases and the replisome: machines within machines. Cell 92:295–305

    CrossRef  CAS  PubMed  Google Scholar 

  • Baric RS, Fu K, Schaad MC, Stohlman SA (1990a) Establishing a genetic recombination map for murine coronavirus strain A59 complementation groups. Virology 177:646–656

    CrossRef  CAS  PubMed  Google Scholar 

  • Baric RS, Nelson GW, Fleming JO, Deans RJ, Keck JG, Casteel N, Stohlman SA (1988) Interactions between coronavirus nucleocapsid protein and viral RNAs: implications for viral transcription. J Virol 62:4280–4287

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Baric RS, Schaad MC, Wei T, Fu KS, Lum K, Shieh C, Stohlman SA (1990b) Murine coronavirus temperature sensitive mutants. Adv Exp Med Biol 276:349–356

    CrossRef  CAS  PubMed  Google Scholar 

  • Behrens SE, Tomei L, De Francesco R (1996) Identification and properties of the RNA-dependent RNA polymerase of hepatitis C virus. EMBO J 15:12–22

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Beinert H, Kennedy MC (1993) Aconitase, a two-faced protein: enzyme and iron regulatory factor. FASEB J 7:1442–1449

    CrossRef  CAS  PubMed  Google Scholar 

  • Ben-David Y, Bani MR, Chabot B, De Koven A, Bernstein A (1992) Retroviral insertions downstream of the heterogeneous nuclear ribonucleoprotein A1 gene in erythroleukemia cells: evidence that A1 is not essential for cell growth. Mol Cell Biol 12:4449–4455

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bienz K, Egger D, Pfister T (1994) Characteristics of the poliovirus replication complex. Arch Virol Suppl 9:147–157

    CAS  PubMed  Google Scholar 

  • Bilodeau PS, Domsic JK, Mayeda A, Krainer AR, Stoltzfus CM (2001) RNA splicing at human immunodeficiency virus type 1 3′ splice site A2 is regulated by binding of hnRNP A/B proteins to an exonic splicing silencer element. J Virol 75:8487–8497

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Black AC, Luo J, Chun S, Bakker A, Fraser JK, Rosenblatt JD (1996) Specific binding of polypyrimidine tract binding protein and hnRNP A1 to HIV-1 CRS elements. Virus Genes 12:275–285

    CrossRef  CAS  PubMed  Google Scholar 

  • Black AC, Luo J, Watanabe C, Chun S, Bakker A, Fraser JK, Morgan JP, Rosenblatt JD (1995) Polypyrimidine tract-binding protein and heterogeneous nuclear ribonucleoprotein A1 bind to human T-cell leukemia virus type 2 RNA regulatory elements. J Virol 69:6852–6858

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Blackwell JL, Brinton MA (1997) Translation elongation factor-1 alpha interacts with the 3′ stem-loop region of West Nile virus genomic RNA. J Virol 71:6433–6444

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Blumenthal T, Carmichael GG (1979) RNA replication: function and structure of Qbeta-replicase. Annu Rev Biochem 48:525–548

    CrossRef  CAS  PubMed  Google Scholar 

  • Bonilla PJ, Gorbalenya AE, Weiss SR (1994) Mouse hepatitis virus strain A59 RNA polymerase gene ORF 1a: heterogeneity among MHV strains. Virology 198:736–740

    CrossRef  CAS  PubMed  Google Scholar 

  • Bonilla PJ, Hughes SA, Pinon JD, Weiss SR (1995) Characterization of the leader papain-like proteinase of MHV-A59: identification of a new in vitro cleavage site. Virology 209:489–497

    CrossRef  CAS  PubMed  Google Scholar 

  • Bonilla PJ, Hughes SA, Weiss SR (1997) Characterization of a second cleavage site and demonstration of activity in trans by the papain-like proteinase of the murine coronavirus mouse hepatitis virus strain A59. J Virol 71:900–909

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Bost AG, Carnahan RH, Lu XT, Denison MR (2000) Four proteins processed from the replicase gene polyprotein of mouse hepatitis virus colocalize in the cell periphery and adjacent to sites of virion assembly. J Virol 74:3379–3387

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Bost AG, Prentice E, Denison MR (2001) Mouse hepatitis virus replicase protein complexes are translocated to sites of M protein accumulation in the ERGIC at late times of infection. Virology 285:21–29

    CrossRef  CAS  PubMed  Google Scholar 

  • Bothwell AL, Ballard DW, Philbrick WM, Lindwall G, Maher SE, Bridgett MM, Jamison SF, Garcia-Blanco MA (1991) Murine polypyrimidine tract binding protein. Purification, cloning, and mapping of the RNA binding domain. J Biol Chem 266:24657–24663

    CrossRef  CAS  PubMed  Google Scholar 

  • Brayton PR, Lai MM, Patton CD, Stohlman SA (1982) Characterization of two RNA polymerase activities induced by mouse hepatitis virus. J Virol 42:847–853

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Brayton PR, Stohlman SA, Lai MM (1984) Further characterization of mouse hepatitis virus RNA-dependent RNA polymerases. Virology 133:197–201

    CrossRef  CAS  PubMed  Google Scholar 

  • Bredenbeek PJ, Pachuk CJ, Noten AF, Charite J, Luytjes W, Weiss SR, Spaan WJ (1990) The primary structure and expression of the second open reading frame of the polymerase gene of the coronavirus MHV-A59; a highly conserved polymerase is expressed by an efficient ribosomal frameshifting mechanism. Nucleic Acids Res 18:1825–1832

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Brierley I, Boursnell ME, Binns MM, Bilimoria B, Blok VC, Brown TD, Inglis SC (1987) An efficient ribosomal frame-shifting signal in the polymerase-encoding region of the coronavirus IBV. EMBO J 6:3779–3785

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Buck KW (1996) Comparison of the replication of positive-stranded RNA viruses of plants and animals. Adv Virus Res 47:159–251

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Burd CG, Dreyfuss G (1994) Conserved structures and diversity of functions of RNA-binding proteins. Science 265:615–621

    CrossRef  CAS  PubMed  Google Scholar 

  • Caputi M, Mayeda A, Krainer AR, Zahler AM (1999) hnRNP A/B proteins are required for inhibition of HIV-1 pre-mRNA splicing. EMBO J 18:4060–4067

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Caputi M, Zahler AM (2002) SR proteins and hnRNP H regulate the splicing of the HIV-1 tev-specific exon 6D. EMBO J 21:845–855

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Chambers TJ, Hahn CS, Galler R, Rice CM (1990) Flavivirus genome organization, expression, and replication. Annu Rev Microbiol 44:649–688

    CrossRef  CAS  PubMed  Google Scholar 

  • Chang RY, Brian DA (1996) cis Requirement for N-specific protein sequence in bovine coronavirus defective interfering RNA replication. J Virol 70:2201–2207

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang RY, Hofmann MA, Sethna PB, Brian DA (1994) A cis-acting function for the coronavirus leader in defective interfering RNA replication. J Virol 68:8223–8231

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung RT, Kaplan LM (1999) Heterogeneous nuclear ribonucleoprotein I (hnRNP-I/PTB) selectively binds the conserved 3′ terminus of hepatitis C viral RNA. Biochem Biophys Res Commun 254:351–362

    CrossRef  CAS  PubMed  Google Scholar 

  • Cologna R, Spagnolo JF, Hogue BG (2000) Identification of nucleocapsid binding sites within coronavirus-defective genomes. Virology 277:235–249

    CrossRef  CAS  PubMed  Google Scholar 

  • Compton SR, Rogers DB, Holmes KV, Fertsch D, Remenick J, McGowan JJ (1987) In vitro replication of mouse hepatitis virus strain A59. J Virol 61:1814–1820

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Craig AW, Haghighat A, Yu AT, Sonenberg N (1998) Interaction of polyadenylate-binding protein with the eIF4G homologue PAIP enhances translation. Nature 392:520–523

    CrossRef  CAS  PubMed  Google Scholar 

  • Das T, Mathur M, Gupta AK, Janssen GM, Banerjee AK (1998) RNA polymerase of vesicular stomatitis virus specifically associates with translation elongation factor-1αβγ for its activity. Proc Natl Acad Sci USA 95:1449–1454

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • De BP, Lesoon A, Banerjee AK (1991) Human parainfluenza virus type 3 transcription in vitro: role of cellular actin in mRNA synthesis. J Virol 65:3268–3275

    CrossRef  Google Scholar 

  • de la Cruz J, Kressler D, Linder P (1999) Unwinding RNA in Saccharomyces cerevisiae: DEAD-box proteins and related families. Trends Biochem Sci 24:192–198

    CrossRef  PubMed  Google Scholar 

  • Denison M, Perlman S (1987) Identification of putative polymerase gene product in cells infected with murine coronavirus A59. Virology 157:565–568

    CrossRef  CAS  PubMed  Google Scholar 

  • Denison MR, Hughes SA, Weiss SR (1995a) Identification and characterization of a 65-kDa protein processed from the gene 1 polyprotein of the murine coronavirus MHV-A59. Virology 207:316–320

    CrossRef  CAS  PubMed  Google Scholar 

  • Denison MR, Kim JC, Ross T (1995b) Inhibition of coronavirus MHV-A59 replication by proteinase inhibitors. Adv Exp Med Biol 380:391–397

    CrossRef  CAS  PubMed  Google Scholar 

  • Denison MR, Spaan WJ, van der Meer Y, Gibson CA, Sims AC, Prentice E, Lu XT (1999) The putative helicase of the coronavirus mouse hepatitis virus is processed from the replicase gene polyprotein and localizes in complexes that are active in viral RNA synthesis. J Virol 73:6862–6871

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Denison MR, Zoltick PW, Hughes SA, Giangreco B, Olson AL, Perlman S, Leibowitz JL, Weiss SR (1992) Intracellular processing of the N-terminal ORF 1a proteins of the coronavirus MHV-A59 requires multiple proteolytic events. Virology 189:274–284

    CrossRef  CAS  PubMed  Google Scholar 

  • Dennis DE, Brian DA (1982) RNA-dependent RNA polymerase activity in coronavirus-infected cells. J Virol 42:153–164

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Diez J, Ishikawa M, Kaido M, Ahlquist P (2000) Identification and characterization of a host protein required for efficient template selection in viral RNA replication. Proc Natl Acad Sci USA 97:3913–3918

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong S, Baker SC (1994) Determinants of the p28 cleavage site recognized by the first papain-like cysteine proteinase of murine coronavirus. Virology 204:541–549

    CrossRef  CAS  PubMed  Google Scholar 

  • Dreyfuss G, Matunis MJ, Pinol-Roma S, Burd CG (1993) hnRNP proteins and the biogenesis of mRNA. Annu Rev Biochem 62:289–321

    CrossRef  CAS  PubMed  Google Scholar 

  • Froshauer S, Kartenbeck J, Helenius A (1988) Alphavirus RNA replicase is located on the cytoplasmic surface of endosomes and lysosomes. J Cell Biol 107:2075–2086

    CrossRef  CAS  PubMed  Google Scholar 

  • Fu K, Baric RS (1994) Map locations of mouse hepatitis virus temperature-sensitive mutants: confirmation of variable rates of recombination. J Virol 68:7458–7466

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Furuya T, Lai MMC (1993) Three different cellular proteins bind to complementary sites on the 5′-end-positive and 3′ end-negative strands of mouse hepatitis virus RNA. J Virol 67:7215–7222

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallie DR (1998) A tale of two termini: a functional interaction between the termini of an mRNA is a prerequisite for efficient translation initiation. Gene 216:1–11

    CrossRef  CAS  PubMed  Google Scholar 

  • Gamarnik AV, Andino R (1997) Two functional complexes formed by KH domain containing proteins with the 5′ noncoding region of poliovirus RNA. RNA 3:882–892

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gamarnik AV, Andino R (1998) Switch from translation to RNA replication in a positive-stranded RNA virus. Genes Dev 12:2293–2304

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao HQ, Schiller JJ, Baker SC (1996) Identification of the polymerase polyprotein products p72 and p65 of the murine coronavirus MHV-JHM. Virus Res 45:101–109

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Gontarek RR, Gutshall LL, Herold KM, Tsai J, Sathe GM, Mao J, Prescott C, Del Vecchio AM (1999) hnRNP C and polypyrimidine tract-binding protein specifically interact with the pyrimidine-rich region within the 3′NTR of the HCV RNA genome. Nucleic Acids Res 27:1457–1463

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorbalenya AE, Blinov VM, Donchenko AP, Koonin EV (1989a) An NTP-binding motif is the most conserved sequence in a highly diverged monophyletic group of proteins involved in positive strand RNA viral replication. J Mol Evol 28:256–268

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorbalenya AE, Koonin EV (1989) Viral proteins containing the purine NTP-binding sequence pattern. Nucleic Acids Res 17:8413–8440

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorbalenya AE, Koonin EV (1993) Helicases: amino acid comparisons and structure-function relationships. Curr Opin Struct Biol 3:419–429

    CrossRef  CAS  Google Scholar 

  • Gorbalenya AE, Koonin EV, Donchenko AP, Blinov VM (1988) A novel superfamily of nucleoside triphosphate-binding motif containing proteins which are probably involved in duplex unwinding in DNA and RNA replication and recombination. FEBS Lett 235:16–24

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorbalenya AE, Koonin EV, Donchenko AP, Blinov VM (1989b) Coronavirus genome: prediction of putative functional domains in the non-structural polyprotein by comparative amino acid sequence analysis. Nucleic Acids Res 17:4847–4861

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorbalenya AE, Koonin EV, Lai MM (1991) Putative papain-related thiol proteases of positive-strand RNA viruses. Identification of rubi-and aphthovirus proteases and delineation of a novel conserved domain associated with proteases of rubi-, alpha-and coronaviruses. FEBS Lett 288:201–205

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorlach M, Burd CG, Dreyfuss G (1994) The mRNA poly(A)-binding protein: localization, abundance, and RNA-binding specificity. Exp Cell Res 211:400–407

    CrossRef  CAS  PubMed  Google Scholar 

  • Grotzinger C, Heusipp G, Ziebuhr J, Harms U, Suss J, Siddell SG (1996) Characterization of a 105-kDa polypeptide encoded in gene 1 of the human coronavirus HCV 229E. Virology 222:227–235

    CrossRef  CAS  PubMed  Google Scholar 

  • Gutierrez-Escolano AL, Brito ZU, del Angel RM, Jiang X (2000) Interaction of cellular proteins with the 5′ end of Norwalk virus genomic RNA. J Virol 74:8558–8562

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Hahm B, Kim YK, Kim JH, Kim TY, Jang SK (1998) Heterogeneous nuclear ribonucleoprotein L interacts with the 3′ border of the internal ribosomal entry site of hepatitis C virus. J Virol 72:8782–8788

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamilton BJ, Burns CM, Nichols RC, Rigby WFC (1997) Modulation of AUUUA response element binding by heterogeneous nuclear ribonucleoprotein A1 in human T lymphocytes. The roles of cytoplasmic location, transcription, and phosphorylation. J Biol Chem 272:28732–28741

    CrossRef  CAS  PubMed  Google Scholar 

  • Hamilton BJ, Nagy E, Malter JS, Arrick BA, Rigby WFC (1993) Association of heterogeneous nuclear ribonucleoprotein A1 and C proteins with reiterated AUUUA sequences. J Biol Chem 268:8881–8887

    CrossRef  CAS  PubMed  Google Scholar 

  • Harris KS, Xiang W, Alexander L, Lane WS, Paul AV, Wimmer E (1994) Interaction of poliovirus polypeptide 3CDpro with the 5′ and 3′ termini of the poliovirus genome. Identification of viral and cellular cofactors needed for efficient binding. J Biol Chem 269:27004–27014

    CrossRef  CAS  PubMed  Google Scholar 

  • Hellen CU, Pestova TV, Litterst M, Wimmer E (1994) The cellular polypeptide p57 (pyrimidine tract-binding protein) binds to multiple sites in the poliovirus 5′ nontranslated region. J Virol 68:941–950

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Henics T, Sanfridson A, Hamilton BJ, Nagy E, Rigby WFC (1994) Enhanced stability of interleukin-2 mRNA in MLA 144 cells. Possible role of cytoplasmic AU-rich sequence-binding proteins. J Biol Chem 269:5377–5383

    CrossRef  CAS  PubMed  Google Scholar 

  • Hentze MW, Kuhn LC (1996) Molecular control of vertebrate iron metabolism: mRNA-based regulatory circuits operated by iron, nitric oxide, and oxidative stress. Proc Natl Acad Sci USA 93:8175–8182

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Herold J, Gorbalenya AE, Thiel V, Schelle B, Siddell SG (1998) Proteolytic processing at the amino terminus of human coronavirus 229E gene 1-encoded polyproteins: identification of a papain-like proteinase and its substrate. J Virol 72:910–918

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Herold J, Siddell SG (1993) An ‘elaborated′ pseudoknot is required for high frequency frameshifting during translation of HCV 229E polymerase mRNA. Nucleic Acids Res 21:5838–5842

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Herold J, Siddell SG, Gorbalenya AE (1999) A human RNA viral cysteine proteinase that depends upon a unique Zn2+-binding finger connecting the two domains of a papain-like fold. J Biol Chem 274:14918–14925

    CrossRef  CAS  PubMed  Google Scholar 

  • Hong Y, Hunt AG (1996) RNA polymerase activity catalyzed by a potyvirus-encoded RNA-dependent RNA polymerase. Virology 226:146–151

    CrossRef  CAS  PubMed  Google Scholar 

  • Hsue B, Hartshorne T, Masters PS (2000) Characterization of an essential RNA secondary structure in the 3′ untranslated region of the murine coronavirus genome. J Virol 74:6911–6921

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsue B, Masters PS (1997) A bulged stem-loop structure in the 3′ untranslated region of the genome of the coronavirus mouse hepatitis virus is essential for replication. J Virol 71:7567–7578

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang P, Lai MM (2001) Heterogeneous nuclear ribonucleoprotein a1 binds to the 3′-untranslated region and mediates potential 5′-3′ end cross talks of mouse hepatitis virus RNA. J Virol 75:5009–5017

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang P, Lai MMC (1999) Polypyrimidine tract-binding protein binds to the complementary strand of the mouse hepatitis virus 3′ untranslated region, thereby altering RNA conformation. J Virol 73:9110–9116

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang YT, Romito RR, De BP, Banerjee AK (1993) Characterization of the in vitro system for the synthesis of mRNA from human respiratory syncytial virus. Virology 193:862–867

    CrossRef  CAS  PubMed  Google Scholar 

  • Hughes SA, Bonilla PJ, Weiss SR (1995) Identification of the murine coronavirus p28 cleavage site. J Virol 69:809–813

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Imataka H, Gradi A, Sonenberg N (1998) A newly identified N-terminal amino acid sequence of human eIF4G binds poly(A)-binding protein and functions in poly(A)-dependent translation. EMBO J 17:7480–7489

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Ito T, Lai MMC (1997) Determination of the secondary structure of and cellular protein binding to the 3′-untranslated region of the hepatitis C virus RNA genome. J Virol 71:8698–8706

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson RJ, Kaminski A (1995) Internal initiation of translation in eukaryotes: the picornavirus paradigm and beyond. RNA 1:985–1000

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jankowsky E, Gross CH, Shuman S, Pyle AM (2000) The DExH protein NPH-II is a processive and directional motor for unwinding RNA. Nature 403:447–451

    CrossRef  CAS  PubMed  Google Scholar 

  • Jendrach M, Thiel V, Siddell S (1999) Characterization of an internal ribosome entry site within mRNA 5 of murine hepatitis virus. Arch Virol 144:921–933

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Joshi RL, Ravel JM, Haenni AL (1986) Interaction of turnip yellow mosaic virus Val-RNA with eukaryotic elongation factor EF-1α. Search for a function. EMBO J 5:1143–1148

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Kadare G, Haenni AL (1997) Virus-encoded RNA helicases. J Virol 71:2583–2590

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaminski A, Hunt SL, Patton JG, Jackson RJ (1995) Direct evidence that polypyrimidine tract binding protein (PTB) is essential for internal initiation of translation of encephalomyocarditis virus RNA. RNA 1:924–938

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kanjanahaluethai A, Baker SC (2000) Identification of mouse hepatitis virus papainlike proteinase 2 activity. J Virol 74:7911–7921

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Kennedy MC, Mende-Mueller L, Blondin GA, Beinert H (1992) Purification and characterization of cytosolic aconitase from beef liver and its relationship to the iron-responsive element binding protein. Proc Natl Acad Sci USA 89:11730–11734

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim HY, LaVaute T, Iwai K, Klausner RD, Rouault TA (1996) Identification of a conserved and functional iron-responsive element in the 5′-untranslated region of mammalian mitochondrial aconitase. J Biol Chem 271:24226–24230

    CrossRef  CAS  PubMed  Google Scholar 

  • Kim JC, Spence RA, Currier PF, Lu X, Denison MR (1995) Coronavirus protein processing and RNA synthesis is inhibited by the cysteine proteinase inhibitor E64d. Virology 208:1–8

    CrossRef  CAS  PubMed  Google Scholar 

  • Kim KH, Makino S (1995a) Two murine coronavirus genes suffice for viral RNA synthesis. J Virol 69:2313–2321

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim YN, Jeong YS, Makino S (1993) Analysis of cis-acting sequences essential for coronavirus defective interfering RNA replication. Virology 197:53–63

    CrossRef  CAS  PubMed  Google Scholar 

  • Kim YN, Makino S (1995b) Characterization of a murine coronavirus defective interfering RNA internal cis-acting replication signal. J Virol 69:4963–4971

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Klausner RD, Rouault TA, Harford JB (1993) Regulating the fate of mRNA: the control of cellular iron metabolism. Cell 72:19–28

    CrossRef  CAS  PubMed  Google Scholar 

  • Koolen MJ, Osterhaus AD, Van Steenis G, Horzinek MC, Van der Zeijst BA (1983) Temperature-sensitive mutants of mouse hepatitis virus strain A59: isolation, characterization and neuropathogenic properties. Virology 125:393–402

    CrossRef  CAS  PubMed  Google Scholar 

  • Koonin EV, Dolja VV (1993) Evolution and taxonomy of positive-strand RNA viruses: implications of comparative analysis of amino acid sequences. Crit Rev Biochem Mol Biol 28:375–430

    CrossRef  CAS  PubMed  Google Scholar 

  • Kuhn LC, Hentze MW (1992) Coordination of cellular iron metabolism by post-transcriptional gene regulation. J Inorg Biochem 47:183–195

    CrossRef  CAS  PubMed  Google Scholar 

  • Lai MMC (1998) Cellular factors in the transcription and replication of viral RNA genomes: a parallel to DNA-dependent RNA transcription. Virology 244:1–12

    CrossRef  CAS  PubMed  Google Scholar 

  • Lai MMC, Cavanagh D (1997) The molecular biology of coronaviruses. Adv Virus Res 48:1–100

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Landers TA, Blumenthal T, Weber K (1974) Function and structure in ribonucleic acid phage Q beta ribonucleic acid replicase. The roles of the different subunits in transcription of synthetic templates. J Biol Chem 249:5801–5808

    CrossRef  CAS  PubMed  Google Scholar 

  • Le H, Tanguay RL, Balasta ML, Wei CC, Browning KS, Metz AM, Goss DJ, Gallie DR (1997) Translation initiation factors eIF-iso4G and eIF-4B interact with the poly(A)-binding protein and increase its RNA binding activity. J Biol Chem 272:16247–16255

    CrossRef  Google Scholar 

  • Lee HJ, Shieh CK, Gorbalenya AE, Koonin EV, La Monica N, Tuler J, Bagdzhadzhyan A, Lai MM (1991) The complete sequence (22 kilobases) of murine coronavirus gene 1 encoding the putative proteases and RNA polymerase. Virology 180:567–582

    CrossRef  CAS  PubMed  Google Scholar 

  • Leibowitz JL, DeVries JR (1988) Synthesis of virus-specific RNA in permeabilized murine coronavirus-infected cells. Virology 166:66–75

    CrossRef  CAS  PubMed  Google Scholar 

  • Leibowitz JL, DeVries JR, Haspel MV (1982) Genetic analysis of murine hepatitis virus strain JHM. J Virol 42:1080–1087

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Li HP, Huang P, Park S, Lai MMC (1999) Polypyrimidine tract-binding protein binds to the leader RNA of mouse hepatitis virus and serves as a regulator of viral transcription. J Virol 73:772–777

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Li HP, Zhang X, Duncan R, Comai L, Lai MMC (1997) Heterogeneous nuclear ribonucleoprotein A1 binds to the transcription-regulatory region of mouse hepatitis virus RNA. Proc Natl Acad Sci USA 94:9544–9549

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Liao CL, Lai MMC (1994) Requirement of the 5′ end genomic sequence as an upstream cis-acting element for coronavirus subgenomic mRNA transcription. J Virol 68:4727–4737

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim KP, Liu DX (1998) Characterization of the two overlapping papain-like proteinase domains encoded in gene 1 of the coronavirus infectious bronchitis virus and determination of the C-terminal cleavage site of an 87-kDa protein. Virology 245:303–312

    CrossRef  CAS  PubMed  Google Scholar 

  • Lim KP, Ng LF, Liu DX (2000) Identification of a novel cleavage activity of the first papain-like proteinase domain encoded by open reading frame 1a of the coronavirus avian infectious bronchitis virus and characterization of the cleavage products. J Virol 74:1674–1685

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin YJ, Lai MM (1993) Deletion mapping of a mouse hepatitis virus defective interfering RNA reveals the requirement of an internal and discontiguous sequence for replication. J Virol 67:6110–6118

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin YJ, Liao CL, Lai MM (1994) Identification of the cis-acting signal for minus-strand RNA synthesis of a murine coronavirus: implications for the role of minus-strand RNA in RNA replication and transcription. J Virol 68:8131–8140

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin YJ, Zhang X, Wu RC, Lai MMC (1996) The 3′ untranslated region of coronavirus RNA is required for subgenomic mRNA transcription from a defective interfering RNA. J Virol 70:7236–7240

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Linder P, Daugeron MC (2000) Are DEAD-box proteins becoming respectable helicases? Nat Struct Biol 7:97–99

    CrossRef  CAS  PubMed  Google Scholar 

  • Liu DX, Brierley I, Tibbles KW, Brown TD (1994) A 100-kilodalton polypeptide encoded by open reading frame (ORF) 1b of the coronavirus infectious bronchitis virus is processed by ORF 1a products. J Virol 68:5772–5780

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu DX, Brown TD (1995) Characterisation and mutational analysis of an ORF 1a-encoding proteinase domain responsible for proteolytic processing of the infectious bronchitis virus 1a/1b polyprotein. Virology 209:420–427

    CrossRef  CAS  PubMed  Google Scholar 

  • Liu DX, Shen S, Xu HY, Wang SF (1998) Proteolytic mapping of the coronavirus infectious bronchitis virus 1b polyprotein: evidence for the presence of four cleavage sites of the 3C-like proteinase and identification of two novel cleavage products. Virology 246:288–297

    CrossRef  CAS  PubMed  Google Scholar 

  • Liu Q, Johnson RF, Leibowitz JL (2001) Secondary structural elements within the 3′ untranslated region of mouse hepatitis virus strain JHM genomic RNA. J Virol 75:12105–12113

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Q, Yu W, Leibowitz JL (1997) A specific host cellular protein binding element near the 3′ end of mouse hepatitis virus genomic RNA. Virology 232:74–85

    CrossRef  CAS  PubMed  Google Scholar 

  • Lohman TM, Bjornson KP (1996) Mechanisms of helicase-catalyzed DNA unwinding. Annu Rev Biochem 65:169–214

    CrossRef  CAS  PubMed  Google Scholar 

  • Lohmann V, Korner F, Herian U, Bartenschlager R (1997) Biochemical properties of hepatitis C virus NS5B RNA-dependent RNA polymerase and identification of amino acid sequence motifs essential for enzymatic activity. J Virol 71:8416–8428

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu X, Lu Y, Denison MR (1996) Intracellular and in vitro-translated 27-kDa proteins contain the 3C-like proteinase activity of the coronavirus MHV-A59. Virology 222:375–382

    CrossRef  CAS  PubMed  Google Scholar 

  • Lu XT, Sims AC, Denison MR (1998) Mouse hepatitis virus 3C-like protease cleaves a 22-kilodalton protein from the open reading frame 1a polyprotein in virus-infected cells and in vitro. J Virol 72:2265–2271

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu Y, Denison MR (1997) Determinants of mouse hepatitis virus 3C-like proteinase activity. Virology 230:335–342

    CrossRef  CAS  PubMed  Google Scholar 

  • Lu Y, Lu X, Denison MR (1995) Identification and characterization of a serine-like proteinase of the murine coronavirus MHV-A59. J Virol 69:3554–3559

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Luytjes W, Bredenbeek PJ, Noten AF, Horzinek MC, Spaan WJ (1988) Sequence of mouse hepatitis virus A59 mRNA 2: indications for RNA recombination between coronaviruses and influenza C virus. Virology 166:415–422

    CrossRef  CAS  PubMed  Google Scholar 

  • Ma AS, Moran-Jones K, Shan J, Munro TP, Snee MJ, Hoek KS, Smith R (2002) hnRNP A3, a novel RNA trafficking response element binding protein. J Biol Chem 8:8

    Google Scholar 

  • Mahy BW, Siddell S, Wege H, ter Meulen V (1983) RNA-dependent RNA polymerase activity in murine coronavirus-infected cells. J Gen Virol 64:103–111

    CrossRef  CAS  PubMed  Google Scholar 

  • Makino S, Joo M, Makino JK (1991) A system for study of coronavirus mRNA synthesis: a regulated, expressed subgenomic defective interfering RNA results from intergenic site insertion. J Virol 65:6031–6041

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin JP, Koehren F, Rannou JJ, Kirn A (1988) Temperature-sensitive mutants of mouse hepatitis virus type 3 (MHV-3): isolation, biochemical and genetic characterization. Arch Virol 100:147–160

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayeda A, Munroe SH, Caceres JF, Krainer AR (1994) Function of conserved domains of hnRNP A1 and other hnRNP A/B proteins. EMBO J 13:5483–5495

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Meerovitch K, Svitkin YV, Lee HS, Lejbkowicz F, Kenan DJ, Chan EK, Agol VI, Keene JD, Sonenberg N (1993) La autoantigen enhances and corrects aberrant translation of poliovirus RNA in reticulocyte lysate. J Virol 67:3798–3807

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Michael WM, Siomi H, Choi M, Pinol-Roma S, Nakielny S, Liu Q, Dreyfuss G (1995) Signal sequences that target nuclear import and nuclear export of pre-mRNAbinding proteins. Cold Spring Harb Symp Quant Biol 60:663–668

    CrossRef  CAS  PubMed  Google Scholar 

  • Miller DJ, Schwartz MD, Ahlquist P (2001) Flock house virus RNA replicates on outer mitochondrial membranes in Drosophila cells. J Virol 75:11664–11676

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Molenkamp R, van Tol H, Rozier BC, van der Meer Y, Spaan WJ, Snijder EJ (2000) The arterivirus replicase is the only viral protein required for genome replication and subgenomic mRNA transcription. J Gen Virol 81:2491–2496

    CrossRef  CAS  PubMed  Google Scholar 

  • Moyer SA, Baker SC, Horikami SM (1990) Host cell proteins required for measles virus reproduction. J Gen Virol 71:775–783

    CrossRef  CAS  PubMed  Google Scholar 

  • Moyer SA, Baker SC, Lessard JL (1986) Tubulin: a factor necessary for the synthesis of both Sendai virus and vesicular stomatitis virus RNAs. Proc Natl Acad Sci USA 83:5405–5409

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Nanda SK, Leibowitz JL (2001) Mitochondrial aconitase binds to the 3′ untranslated region of the mouse hepatitis virus genome. J Virol 75:3352–3362

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson GW, Stohlman SA, Tahara SM (2000) High affinity interaction between nucleocapsid protein and leader/intergenic sequence of mouse hepatitis virus RNA. J Gen Virol 81:181–188

    CAS  PubMed  Google Scholar 

  • Neufeld KL, Richards OC, Ehrenfeld E (1991) Purification, characterization, and comparison of poliovirus RNA polymerase from native and recombinant sources. J Biol Chem 266:24212–24219

    CrossRef  CAS  PubMed  Google Scholar 

  • Niepmann M (1996) Porcine polypyrimidine tract-binding protein stimulates translation initiation at the internal ribosome entry site of foot-and-mouth-disease virus. FEBS Lett 388:39–42

    CrossRef  CAS  PubMed  Google Scholar 

  • Niepmann M, Petersen A, Meyer K, Beck E (1997) Functional involvement of polypyrimidine tract-binding protein in translation initiation complexes with the internal ribosome entry site of foot-and-mouth disease virus. J Virol 71:8330–8339

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Oglesbee MJ, Liu Z, Kenney H, Brooks CL (1996) The highly inducible member of the 70 kDa family of heat shock proteins increases canine distemper virus polymerase activity. J Gen Virol 77:2125–2135

    CrossRef  CAS  PubMed  Google Scholar 

  • Osman TA, Buck KW (1997) The tobacco mosaic virus RNA polymerase complex contains a plant protein related to the RNA-binding subunit of yeast eIF-3. J Virol 71:6075–6082

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Pardigon N, Strauss JH (1996) Mosquito homolog of the La autoantigen binds to Sindbis virus RNA. J Virol 70:1173–1181

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Parsley TB, Towner JS, Blyn LB, Ehrenfeld E, Semler BL (1997) Poly (rC) binding protein 2 forms a ternary complex with the 5′-terminal sequences of poliovirus RNA and the viral 3CD proteinase. RNA 3:1124–1134

    CAS  PubMed  PubMed Central  Google Scholar 

  • Perlman S, Ries D, Bolger E, Chang LJ, Stoltzfus CM (1986) MHV nucleocapsid synthesis in the presence of cycloheximide and accumulation of negative strand MHV RNA. Virus Res 6:261–272

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinol-Roma S, Dreyfuss G (1992) Shuttling of pre-mRNA binding proteins between nucleus and cytoplasm. Nature 355:730–732

    CrossRef  CAS  PubMed  Google Scholar 

  • Pinon JD, Mayreddy RR, Turner JD, Khan FS, Bonilla PJ, Weiss SR (1997) Efficient autoproteolytic processing of the MHV-A59 3C-like proteinase from the flanking hydrophobic domains requires membranes. Virology 230:309–322

    CrossRef  CAS  PubMed  Google Scholar 

  • Pinon JD, Teng H, Weiss SR (1999) Further requirements for cleavage by the murine coronavirus 3C-like proteinase: identification of a cleavage site within ORF1b. Virology 263:471–484

    CrossRef  CAS  PubMed  Google Scholar 

  • Pogue GP, Huntley CC, Hall TC (1994) Common replication strategies emerging from the study of diverse groups of positive-strand RNA viruses. Arch Virol Suppl 9:181–194

    CAS  PubMed  Google Scholar 

  • Quadt R, Kao CC, Browning KS, Hershberger RP, Ahlquist P (1993) Characterization of a host protein associated with brome mosaic virus RNA-dependent RNA polymerase. Proc Natl Acad Sci USA 90:1498–1502

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Robb JA, Bond CW (1979) Pathogenic murine coronaviruses. I. Characterization of biological behavior in vitro and virus-specific intracellular RNA of strongly neurotropic JHMVand weakly neurotropic A59V viruses. Virology 94:352–370

    CrossRef  CAS  PubMed  Google Scholar 

  • Rothstein MA, Richards OC, Amin C, Ehrenfeld E (1988) Enzymatic activity of poliovirus RNA polymerase synthesized in Escherichia coli from viral cDNA. Virology 164:301–308

    CrossRef  CAS  PubMed  Google Scholar 

  • Sachs AB, Sarnow P, Hentze MW (1997) Starting at the beginning, middle, and end: translation initiation in eukaryotes. Cell 89:831–838

    CrossRef  CAS  PubMed  Google Scholar 

  • Sawicki SG, Sawicki DL (1986) Coronavirus minus-strand RNA synthesis and effect of cycloheximide on coronavirus RNA synthesis. J Virol 57:328–334

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaad MC, Stohlman SA, Egbert J, Lum K, Fu K, Wei T, Jr., Baric RS (1990) Genetics of mouse hepatitis virus transcription: identification of cistrons which may function in positive and negative strand RNA synthesis. Virology 177:634–645

    CrossRef  CAS  PubMed  Google Scholar 

  • Schalinske KL, Chen OS, Eisenstein RS (1998) Iron differentially stimulates translation of mitochondrial aconitase and ferritin mRNAs in mammalian cells. Implications for iron regulatory proteins as regulators of mitochondrial citrate utilization. J Biol Chem 273:3740–3746

    CrossRef  CAS  PubMed  Google Scholar 

  • Schiller JJ, Kanjanahaluethai A, Baker SC (1998) Processing of the coronavirus MHV-JHM polymerase polyprotein: identification of precursors and proteolytic products spanning 400 kilodaltons of ORF1a. Virology 242:288–302

    CrossRef  CAS  PubMed  Google Scholar 

  • Schmid SR, Linder P (1992) D-E-A-D protein family of putative RNA helicases. Mol Microbiol 6:283–291

    CrossRef  CAS  PubMed  Google Scholar 

  • Schwartz M, Chen J, Janda M, Sullivan M, den Boon J, Ahlquist P (2002) A positive-strand RNA virus replication complex parallels form and function of retrovirus capsids. Mol Cell 9:505–514

    CrossRef  CAS  PubMed  Google Scholar 

  • Schwarz B, Routledge E, Siddell SG (1990) Murine coronavirus nonstructural protein ns2 is not essential for virus replication in transformed cells. J Virol 64:4784–4791

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Seybert A, Hegyi A, Siddell SG, Ziebuhr J (2000) The human coronavirus 229E superfamily 1 helicase has RNA and DNA duplex-unwinding activities with 5′-to-3′ polarity. RNA 6:1056–1068

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen X, Masters PS (2001) Evaluation of the role of heterogeneous nuclear ribonucleoprotein A1 as a host factor in murine coronavirus discontinuous transcription and genome replication. Proc Natl Acad Sci USA 98:2717–2722

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi ST, Huang P, Li HP, Lai MMC (2000) Heterogeneous nuclear ribonucleoprotein A1 regulates RNA synthesis of a cytoplasmic virus. EMBO J 19:4701–4711

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi ST, Schiller JJ, Kanjanahaluethai A, Baker SC, Oh JW, Lai MM (1999) Colocalization and membrane association of murine hepatitis virus gene 1 products and de novo-synthesized viral RNA in infected cells. J Virol 73:5957–5969

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi ST, Yu GY, Lai MMC (2003) Multiple type A/B heterogeneous nuclear ribonucleoproteins (hnRNPs) can replace hnRNP A1 in mouse hepatitis virus RNA synthesis. J Virol 11:10584–10593

    CrossRef  CAS  Google Scholar 

  • Sims AC, Ostermann J, Denison MR (2000) Mouse hepatitis virus replicase proteins associate with two distinct populations of intracellular membranes. J Virol 74:5647–5654

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Siomi H, Dreyfuss G (1995) A nuclear localization domain in the hnRNP A1 protein. J Cell Biol 129:551–560

    CrossRef  CAS  PubMed  Google Scholar 

  • Snijder EJ, van Tol H, Roos N, Pedersen KW (2001) Non-structural proteins 2 and 3 interact to modify host cell membranes during the formation of the arterivirus replication complex. J Gen Virol 82:985–994

    CrossRef  CAS  PubMed  Google Scholar 

  • Sokolowski M, Schwartz S (2001) Heterogeneous nuclear ribonucleoprotein C binds exclusively to the functionally important UUUUU-motifs in the human papillomavirus type-1 AU-rich inhibitory element. Virus Res 73:163–175

    CrossRef  CAS  PubMed  Google Scholar 

  • Spagnolo JF, Hogue BG (2000) Host protein interactions with the 3′ end of bovine coronavirus RNA and the requirement of the poly(A) tail for coronavirus defective genome replication. J Virol 74:5053–5065

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Spangberg K, Wiklund L, Schwartz S (2000) HuR, a protein implicated in oncogene and growth factor mRNA decay, binds to the 3′ ends of hepatitis C virus RNA of both polarities. Virology 274:378–390

    CrossRef  CAS  PubMed  Google Scholar 

  • Stalcup RP, Baric RS, Leibowitz JL (1998) Genetic complementation among three panels of mouse hepatitis virus gene 1 mutants. Virology 241:112–121

    CrossRef  CAS  PubMed  Google Scholar 

  • Stohlman SA, Baric RS, Nelson GN, Soe LH, Welter LM, Deans RJ (1988) Specific interaction between coronavirus leader RNA and nucleocapsid protein. J Virol 62:4288–4295

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Svitkin YV, Ovchinnikov LP, Dreyfuss G, Sonenberg N (1996) General RNA binding proteins render translation cap dependent. EMBO J 15:7147–7155

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Tahara S, Bergmann C, Nelson G, Anthony R, Dietlin T, Kyuwa S, Stohlman S (1993) Effects of mouse hepatitis virus infection on host cell metabolism. Adv Exp Med Biol 342:111–116

    CrossRef  CAS  PubMed  Google Scholar 

  • Tahara SM, Dietlin TA, Bergmann CC, Nelson GW, Kyuwa S, Anthony RP, Stohlman SA (1994) Coronavirus translational regulation: leader affects mRNA efficiency. Virology 202:621–630

    CrossRef  CAS  PubMed  Google Scholar 

  • Tahara SM, Dietlin TA, Nelson GW, Stohlman SA, Manno DJ (1998) Mouse hepatitis virus nucleocapsid protein as a translational effector of viral mRNAs. Adv Exp Med Biol 440:313–318

    CrossRef  CAS  PubMed  Google Scholar 

  • Tan BH, Fu J, Sugrue RJ, Yap EH, Chan YC, Tan YH (1996) Recombinant dengue type 1 virus NS5 protein expressed in Escherichia coli exhibits RNA-dependent RNA polymerase activity. Virology 216:317–325

    CrossRef  CAS  PubMed  Google Scholar 

  • Tarun SZ, Jr., Sachs AB (1996) Association of the yeast poly(A) tail binding protein with translation initiation factor eIF-4G. EMBO J 15:7168–7177

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Tarun SZ, Jr., Wells SE, Deardorff JA, Sachs AB (1997) Translation initiation factor eIF4G mediates in vitro poly(A) tail-dependent translation. Proc Natl Acad Sci USA 94:9046–9051

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Thiel V, Herold J, Schelle B, Siddell SG (2001) Viral replicase gene products suffice for coronavirus discontinuous transcription. J Virol 75:6676–6681

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Thiel V, Siddell SG (1994) Internal ribosome entry in the coding region of murine hepatitis virus mRNA 5. J Gen Virol 75:3041–3046

    CrossRef  CAS  PubMed  Google Scholar 

  • Tijms MA, van Dinten LC, Gorbalenya AE, Snijder EJ (2001) A zinc finger-containing papain-like protease couples subgenomic mRNA synthesis to genome translation in a positive-stranded RNA virus. Proc Natl Acad Sci USA 98:1889–1894

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Valcarcel J, Gebauer F (1997) Post-transcriptional regulation: the dawn of PTB. Curr Biol 7:R705–708

    CrossRef  CAS  PubMed  Google Scholar 

  • van der Meer Y, Snijder EJ, Dobbe JC, Schleich S, Denison MR, Spaan WJ, Locker JK (1999) Localization of mouse hepatitis virus nonstructural proteins and RNA synthesis indicates a role for late endosomes in viral replication. J Virol 73:7641–7657

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • van Dinten LC, den Boon JA, Wassenaar AL, Spaan WJ, Snijder EJ (1997) An infectious arterivirus cDNA clone: identification of a replicase point mutation that abolishes discontinuous mRNA transcription. Proc Natl Acad Sci USA 94:991–996

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • van Dinten LC, Rensen S, Gorbalenya AE, Snijder EJ (1999) Proteolytic processing of the open reading frame 1b-encoded part of arterivirus replicase is mediated by nsp4 serine protease and Is essential for virus replication. J Virol 73:2027–2037

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • van Dinten LC, Wassenaar AL, Gorbalenya AE, Spaan WJ, Snijder EJ (1996) Processing of the equine arteritis virus replicase ORF1b protein: identification of cleavage products containing the putative viral polymerase and helicase domains. J Virol 70:6625–6633

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Van Dyke TA, Flanegan JB (1980) Identification of poliovirus polypeptide P63 as a soluble RNA-dependent RNA polymerase. J Virol 35:732–740

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Zhang X (1999) The nucleocapsid protein of coronavirus mouse hepatitis virus interacts with the cellular heterogeneous nuclear ribonucleoprotein A1 in vitro and in vivo. Virology 265:96–109

    CrossRef  CAS  PubMed  Google Scholar 

  • Wang YF, Chen SC, Wu FY, Wu CW (1997) The interaction between human cytomegalovirus immediate-early gene 2 (IE2) protein and heterogeneous ribonucleoprotein A1. Biochem Biophys Res Commun 232:590–594

    CrossRef  CAS  PubMed  Google Scholar 

  • Weighardt F, Biamonti G, Riva S (1995) Nucleo-cytoplasmic distribution of human hnRNP proteins: a search for the targeting domains in hnRNP A1. J Cell Sci 108:545–555

    CrossRef  CAS  PubMed  Google Scholar 

  • Williams GD, Chang RY, Brian DA (1995) Evidence for a pseudoknot in the 3′ untranslated region of the bovine coronavirus genome. Adv Exp Med Biol 380:511–514

    CrossRef  CAS  PubMed  Google Scholar 

  • Wu-Baer F, Lane WS, Gaynor RB (1996) Identification of a group of cellular cofactors that stimulate the binding of RNA polymerase II and TRP-185 to human immunodeficiency virus 1 TAR RNA. J Biol Chem 271:4201–4208

    CrossRef  CAS  PubMed  Google Scholar 

  • Yokomori K, Banner LR, Lai MM (1991) Heterogeneity of gene expression of the hemagglutinin-esterase (HE) protein of murine coronaviruses. Virology 183:647–657

    CrossRef  CAS  PubMed  Google Scholar 

  • Yokomori K, Lai MM (1991) Mouse hepatitis virus S RNA sequence reveals that nonstructural proteins ns4 and ns5a are not essential for murine coronavirus replication. J Virol 65:5605–5608

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu W, Leibowitz JL (1995a) A conserved motif at the 3′ end of mouse hepatitis virus genomic RNA required for host protein binding and viral RNA replication. Virology 214:128–138

    CrossRef  CAS  PubMed  Google Scholar 

  • Yu W, Leibowitz JL (1995b) Specific binding of host cellular proteins to multiple sites within the 3′ end of mouse hepatitis virus genomic RNA. J Virol 69:2016–2023

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan ZH, Kumar U, Thomas HC, Wen YM, Monjardino J (1997) Expression, purification, and partial characterization of HCV RNA polymerase. Biochem Biophys Res Commun 232:231–235

    CrossRef  CAS  PubMed  Google Scholar 

  • Zhang X, Lai MMC (1995a) Interactions between the cytoplasmic proteins and the intergenic (promoter) sequence of mouse hepatitis virus RNA: correlation with the amounts of subgenomic mRNA transcribed. J Virol 69:1637–1644

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Li HP, Xue W, Lai MMC (1999) Formation of a ribonucleoprotein complex of mouse hepatitis virus involving heterogeneous nuclear ribonucleoprotein A1 and transcription-regulatory elements of viral RNA. Virology 264:115–124

    CrossRef  CAS  PubMed  Google Scholar 

  • Zhang X, Liao CL, Lai MMC (1994) Coronavirus leader RNA regulates and initiates subgenomic mRNA transcription both in trans and in cis. J Virol 68:4738–4746

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang XM, Lai MMC (1995b) Regulation of coronavirus RNA transcription is likely mediated by protein-RNA interactions. Adv Exp Med Biol 380:515–521

    CrossRef  CAS  PubMed  Google Scholar 

  • Ziebuhr J, Siddell SG (1999) Processing of the human coronavirus 229E replicase polyproteins by the virus-encoded 3C-like proteinase: identification of proteolytic products and cleavage sites common to pp1a and pp1ab. J Virol 73:177–185

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Ziebuhr J, Snijder EJ, Gorbalenya AE (2000) Virus-encoded proteinases and proteolytic processing in the Nidovirales. J Gen Virol 81:853–879

    CrossRef  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Molecular Microbiology and Immunology, University of Southern California, Keck School of Medicine, 2011 Zonal Avenue, Los Angeles, CA, 90033, USA

    S. T. Shi & M. M. C. Lai

Authors
  1. S. T. Shi
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. M. M. C. Lai
    View author publications

    You can also search for this author in PubMed Google Scholar

Editor information

Editors and Affiliations

  1. Department of Molecular and Cell Biology, Centro Nacional de Biotecnología, Campus Universidad Autónoma, Cantoblanco, 38049, Madrid, Spain

    Luis Enjuanes

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer-Verlag

About this chapter

Cite this chapter

Shi, S.T., Lai, M.M.C. (2005). Viral and Cellular Proteins Involved in Coronavirus Replication. In: Enjuanes, L. (eds) Coronavirus Replication and Reverse Genetics. Current Topics in Microbiology and Immunology, vol 287. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26765-4_4

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/3-540-26765-4_4

  • Published: 25 October 2005

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21494-6

  • Online ISBN: 978-3-540-26765-2

  • eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Publish with us

Policies and ethics

search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

167.114.118.210

Not affiliated

Springer Nature

© 2023 Springer Nature