Skip to main content

Advertisement

SpringerLink
  • Log in
Book cover

Coronavirus Replication and Reverse Genetics pp 57–94Cite as

  1. Home
  2. Coronavirus Replication and Reverse Genetics
  3. Chapter
The Coronavirus Replicase

The Coronavirus Replicase

  • J. Ziebuhr2 
  • Chapter
  • First Online: 25 October 2005
  • 14k Accesses

  • 284 Citations

  • 10 Altmetric

Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY,volume 287)

Abstract

Coronavirus genome replication and transcription take place at cytoplasmic membranes and involve coordinated processes of both continuous and discontinuous RNA synthesis that are mediated by the viral replicase, a huge protein complex encoded by the 20-kb replicase gene. The replicase complex is believed to be comprised of up to 16 viral subunits and a number of cellular proteins. Besides RNA-dependent RNA polymerase, RNA helicase, and protease activities, which are common to RNA viruses, the coronavirus replicase was recently predicted to employ a variety of RNA processing enzymes that are not (or extremely rarely) found in other RNA viruses and include putative sequence-specific endoribonuclease, 3′-to-5′ exoribonuclease, 2′-O-ribose methyltransferase, ADP ribose 1′-phosphatase and, in a subset of group 2 coronaviruses, cyclic phosphodiesterase activities. This chapter reviews (1) the organization of the coronavirus replicase gene, (2) the proteolytic processing of the replicase by viral proteases, (3) the available functional and structural information on individual subunits of the replicase, such as proteases, RNA helicase, and the RNA-dependent RNA polymerase, and (4) the subcellular localization of coronavirus proteins involved in RNA synthesis. Although many molecular details of the coronavirus life cycle remain to be investigated, the available information suggests that these viruses and their distant nidovirus relatives employ a unique collection of enzymatic activities and other protein functions to synthesize a set of 5′-leader-containing subgenomic mRNAs and to replicate the largest RNA virus genomes currently known.

Keywords

  • Severe Acute Respiratory Syndrome
  • Porcine Epidemic Diarrhea Virus
  • Infectious Bronchitis Virus
  • Mouse Hepatitis Virus
  • Severe Acute Respiratory Syndrome Coronavirus

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Download chapter PDF

References

  • Allaire M, Chernaia MM, Malcolm BA, James MN (1994) Picornaviral 3C cysteine proteinases have a fold similar to chymotrypsin-like serine proteinases. Nature 369:72–76

    CrossRef  PubMed  Google Scholar 

  • Almazán F, González JM, Pénzes Z, Izeta A, Calvo E, Plana-Durán J, Enjuanes L (2000) Engineering the largest RNA virus genome as an infectious bacterial artificial chromosome. Proc Natl Acad Sci USA 97:5516–5521

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Anand K, Palm GJ, Mesters JR, Siddell SG, Ziebuhr J, Hilgenfeld R (2002) Structure of coronavirus main proteinase reveals combination of a chymotrypsin fold with an extra alpha-helical domain. EMBO J 21:3213–3224

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Anand K, Ziebuhr J, Wadhwani P, Mesters JR, Hilgenfeld R (2003) Coronavirus main proteinase (3CLpro) structure: basis for design of anti-SARS drugs. Science 300:1763–1767

    CrossRef  CAS  PubMed  Google Scholar 

  • Baker SC, Shieh CK, Soe LH, Chang MF, Vannier DM, Lai MM (1989) Identification of a domain required for autoproteolytic cleavage of murine coronavirus gene A polyprotein. J Virol 63:3693–3699

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker SC, Yokomori K, Dong S, Carlisle R, Gorbalenya AE, Koonin EV, Lai MM (1993) Identification of the catalytic sites of a papain-like cysteine proteinase of murine coronavirus. J Virol 67:6056–6063

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Baric RS, Nelson GW, Fleming JO, Deans RJ, Keck JG, Casteel N, Stohlman SA (1988) Interactions between coronavirus nucleocapsid protein and viral RNAs: implications for viral transcription. J Virol 62:4280–4287

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrette-Ng IH, Ng KK, Mark BL, Van Aken D, Cherney MM, Garen C, Kolodenko Y, Gorbalenya AE, Snijder EJ, James MN (2002) Structure of arterivirus nsp4. The smallest chymotrypsin-like proteinase with an alpha/beta C-terminal extension and alternate conformations of the oxyanion hole. J Biol Chem 277:39960–39966

    CrossRef  CAS  PubMed  Google Scholar 

  • Bautista EM, Faaberg KS, Mickelson D, McGruder ED (2002) Functional properties of the predicted helicase of porcine reproductive and respiratory syndrome virus. Virology 298:258–270

    CrossRef  CAS  PubMed  Google Scholar 

  • Bergmann EM, Mosimann SC, Chernaia MM, Malcolm BA, James MN (1997) The refined crystal structure of the 3C gene product from hepatitis A virus: specific proteinase activity and RNA recognition. J Virol 71:2436–2448

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Bi W, Piñon JD, Hughes S, Bonilla PJ, Holmes KV, Weiss SR, Leibowitz JL (1998) Localization of mouse hepatitis virus open reading frame 1A derived proteins. J Neurovirol 4:594–605

    CrossRef  CAS  PubMed  Google Scholar 

  • Blom N, Hansen J, Blaas D, Brunak S (1996) Cleavage site analysis in picornaviral polyproteins: discovering cellular targets by neural networks. Protein Sci 5:2203–2216

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonilla PJ, Gorbalenya AE, Weiss SR (1994) Mouse hepatitis virus strain A59 RNA polymerase gene ORF 1a: heterogeneity among MHV strains. Virology 198:736–740

    CrossRef  CAS  PubMed  Google Scholar 

  • Bonilla PJ, Hughes SA, Weiss SR (1997) Characterization of a second cleavage site and demonstration of activity in trans by the papain-like proteinase of the murine coronavirus mouse hepatitis virus strain A59. J Virol 71:900–909

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Bost AG, Carnahan RH, Lu XT, Denison MR (2000) Four proteins processed from the replicase gene polyprotein of mouse hepatitis virus colocalize in the cell periphery and adjacent to sites of virion assembly. J Virol 74:3379–3387

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Bost AG, Prentice E, Denison MR (2001) Mouse hepatitis virus replicase protein complexes are translocated to sites of M protein accumulation in the ERGIC at late times of infection. Virology 285:21–29

    CrossRef  CAS  PubMed  Google Scholar 

  • Boursnell ME, Brown TD, Foulds IJ, Green PF, Tomley FM, Binns MM (1987) Completion of the sequence of the genome of the coronavirus avian infectious bronchitis virus. J Gen Virol 68:57–77

    CrossRef  CAS  PubMed  Google Scholar 

  • Bredenbeek PJ, Pachuk CJ, Noten AF, Charite J, Luytjes W, Weiss SR, Spaan WJ (1990) The primary structure and expression of the second open reading frame of the polymerase gene of the coronavirus MHV-A59; a highly conserved polymerase is expressed by an efficient ribosomal frameshifting mechanism. Nucleic Acids Res 18:1825–1832

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Brierley I, Boursnell ME, Binns MM, Bilimoria B, Blok VC, Brown TD, Inglis SC (1987) An efficient ribosomal frame-shifting signal in the polymerase-encoding region of the coronavirus IBV. EMBO J 6:3779–3785

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Brierley I, Digard P, Inglis SC (1989) Characterization of an efficient coronavirus ribosomal frameshifting signal: requirement for an RNA pseudoknot. Cell 57:537–547

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Brockway SM, Clay CT, Lu XT, Denison MR (2003) Characterization of the expression, intracellular localization, and replication complex association of the putative mouse hepatitis virus RNA-dependent RNA polymerase. J Virol 77:10515–10527

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Buck KW (1996) Comparison of the replication of positive-stranded RNA viruses of plants and animals. Adv Virus Res 47:159–251

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Bügl H, Fauman EB, Staker BL, Zheng F, Kushner SR, Saper MA, Bardwell JC, Jakob U (2000) RNA methylation under heat shock control. Mol Cell 6:349–360

    CrossRef  PubMed  Google Scholar 

  • Burns CC, Lawson MA, Semler BL, Ehrenfeld E (1989) Effects of mutations in poliovirus 3Dpol on RNA polymerase activity and on polyprotein cleavage. J Virol 63:4866–4874

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Casais R, Thiel V, Siddell SG, Cavanagh D, Britton P (2001) Reverse genetics system for the avian coronavirus infectious bronchitis virus. J Virol 75:12359–12369

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Cavanagh D (1997) Nidovirales: a new order comprising Coronaviridae and Arteriviridae. Arch Virol 142:629–633

    CAS  PubMed  Google Scholar 

  • Cho MW, Teterina N, Egger D, Bienz K, Ehrenfeld E (1994) Membrane rearrangement and vesicle induction by recombinant poliovirus 2C and 2BC in human cells. Virology 202:129–145

    CrossRef  CAS  PubMed  Google Scholar 

  • Chouljenko VN, Lin XQ, Storz J, Kousoulas KG, Gorbalenya AE (2001) Comparison of genomic and predicted amino acid sequences of respiratory and enteric bovine coronaviruses isolated from the same animal with fatal shipping pneumonia. J Gen Virol 82:2927–2933

    CrossRef  CAS  PubMed  Google Scholar 

  • Compton SR, Rogers DB, Holmes KV, Fertsch D, Remenick J, McGowan JJ (1987) In vitro replication of mouse hepatitis virus strain A59. J Virol 61:1814–1820

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Cowley JA, Dimmock CM, Spann KM, Walker PJ (2000) Gill-associated virus of Penaeus monodon prawns: an invertebrate virus with ORF1a and ORF1b genes related to arteri-and coronaviruses. J Gen Virol 81:1473–1484

    CrossRef  CAS  PubMed  Google Scholar 

  • Culver GM, Consaul SA, Tycowski KT, Filipowicz W, Phizicky EM (1994) tRNA splicing in yeast and wheat germ. A cyclic phosphodiesterase implicated in the metabolism of ADP-ribose 1″,2″-cyclic phosphate. J Biol Chem 269:24928–24934

    CrossRef  CAS  PubMed  Google Scholar 

  • Datta U, Dasgupta A (1994) Expression and subcellular localization of poliovirus VPg-precursor protein 3AB in eukaryotic cells: evidence for glycosylation in vitro. J Virol 68:4468–4477

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • De Graaff M, Coscoy L, Jaspars EM (1993) Localization and biochemical characterization of alfalfa mosaic virus replication complexes. Virology 194:878–881

    CrossRef  PubMed  Google Scholar 

  • de Vries AAF, Horzinek MC, Rottier PJM, de Groot RJ (1997) The genome organization of the Nidovirales: similarities and differences between arteri-, toro-, and coronaviruses. Sem Virol 8:33–47

    CrossRef  Google Scholar 

  • den Boon JA, Snijder EJ, Chirnside ED, de Vries AA, Horzinek MC, Spaan WJ (1991) Equine arteritis virus is not a togavirus but belongs to the coronaviruslike superfamily. J Virol 65:2910–2920

    CrossRef  Google Scholar 

  • Denison MR, Hughes SA, Weiss SR (1995) Identification and characterization of a 65-kDa protein processed from the gene 1 polyprotein of the murine coronavirus MHV-A59. Virology 207:316–320

    CrossRef  CAS  PubMed  Google Scholar 

  • Denison MR, Spaan WJ, van der Meer Y, Gibson CA, Sims AC, Prentice E, Lu XT (1999) The putative helicase of the coronavirus mouse hepatitis virus is processed from the replicase gene polyprotein and localizes in complexes that are active in viral RNA synthesis. J Virol 73:6862–6871

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong S, Baker SC (1994) Determinants of the p28 cleavage site recognized by the first papain-like cysteine proteinase of murine coronavirus. Virology 204:541–549

    CrossRef  CAS  PubMed  Google Scholar 

  • Dougherty WG, Semler BL (1993) Expression of virus-encoded proteinases: functional and structural similarities with cellular enzymes. Microbiol Rev 57:781–822

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Egger D, Wölk B, Gosert R, Bianchi L, Blum HE, Moradpour D, Bienz K (2002) Expression of hepatitis C virus proteins induces distinct membrane alterations including a candidate viral replication complex. J Virol 76:5974–5984

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Eleouet JF, Rasschaert D, Lambert P, Levy L, Vende P, Laude H (1995) Complete sequence (20 kilobases) of the polyprotein-encoding gene 1 of transmissible gastroenteritis virus. Virology 206:817–822

    CrossRef  CAS  PubMed  Google Scholar 

  • Fan K, Wei P, Feng Q, Chen S, Huang C, Ma L, Lai B, Pei J, Liu Y, Chen J, Lai L (2003) Biosynthesis, purification, and substrate specificity of severe acute respiratory syndrome coronavirus 3C-like proteinase. J Biol Chem 279:1637–1642

    CrossRef  PubMed  CAS  Google Scholar 

  • Filipowicz W, Pogacic V (2002) Biogenesis of small nucleolar ribonucleoproteins. Curr Opin Cell Biol 14:319–327

    CrossRef  CAS  PubMed  Google Scholar 

  • Froshauer S, Kartenbeck J, Helenius A (1988) Alphavirus RNA replicase is located on the cytoplasmic surface of endosomes and lysosomes. J Cell Biol 107:2075–2086

    CrossRef  CAS  PubMed  Google Scholar 

  • Gallagher TM (1996) Murine coronavirus membrane fusion is blocked by modification of thiols buried within the spike protein. J Virol 70:4683–4690

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldbach R (1987) Genome similarities between plant and animal RNA viruses. Microbiol Sci 4:197–202

    CAS  PubMed  Google Scholar 

  • Gorbalenya AE, Donchenko AP, Blinov VM, Koonin EV (1989a) Cysteine proteases of positive strand RNA viruses and chymotrypsin-like serine proteases. A distinct protein superfamily with a common structural fold. FEBS Lett 243:103–114

    CrossRef  CAS  PubMed  Google Scholar 

  • Gorbalenya AE, Koonin EV, Donchenko AP, Blinov VM (1989b) Two related superfamilies of putative helicases involved in replication, recombination, repair and expression of DNA and RNA genomes. Nucleic Acids Res 17:4713–4730

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorbalenya AE, Koonin EV, Donchenko AP, Blinov VM (1989c) Coronavirus genome: prediction of putative functional domains in the non-structural polyprotein by comparative amino acid sequence analysis. Nucleic Acids Res 17:4847–4861

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorbalenya AE, Koonin EV, Lai MM (1991) Putative papain-related thiol proteases of positive-strand RNA viruses. Identification of rubi-and aphthovirus proteases and delineation of a novel conserved domain associated with proteases of rubi-, alpha-and coronaviruses. FEBS Lett 288:201–205

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorbalenya AE, Koonin EV (1993) Helicases: amino acid sequence comparisons and structure-function relationships. Curr Opin Struct Biol 3:419–429

    CrossRef  CAS  Google Scholar 

  • Gorbalenya AE, Snijder EJ (1996) Viral cysteine proteinases. Persp Drug Discov Des 6:64–86

    CrossRef  CAS  Google Scholar 

  • Gorbalenya AE (2001) Big nidovirus genome. When count and order of domains matter. Adv Exp Med Biol 494:1–17

    CrossRef  CAS  PubMed  Google Scholar 

  • Gosert R, Kanjanahaluethai A, Egger D, Bienz K, Baker SC (2002) RNA replication of mouse hepatitis virus takes place at double-membrane vesicles. J Virol 76:3697–3708

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Grötzinger C, Heusipp G, Ziebuhr J, Harms U, Süss J, Siddell SG (1996) Characterization of a 105-kDa polypeptide encoded in gene 1 of the human coronavirus HCV 229E. Virology 222:227–235

    CrossRef  PubMed  Google Scholar 

  • Guarné A, Tormo J, Kirchweger R, Pfistermueller D, Fita I, Skern T (1998) Structure of the foot-and-mouth disease virus leader protease: a papain-like fold adapted for self-processing and eIF4G recognition. EMBO J 17:7469–7479

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Guarné A, Hampoelz B, Glaser W, Carpena X, Tormo J, Fita I, Skern T (2000) Structural and biochemical features distinguish the foot-and-mouth disease virus leader proteinase from other papain-like enzymes. J Mol Biol 302:1227–240

    CrossRef  PubMed  Google Scholar 

  • Hansen JL, Long AM, Schultz SC (1997) Structure of the RNA-dependent RNA polymerase of poliovirus. Structure 5:1109–1122

    CrossRef  CAS  PubMed  Google Scholar 

  • Hegyi A, Friebe A, Gorbalenya AE, Ziebuhr J (2002) Mutational analysis of the active centre of coronavirus 3C-like proteases. J Gen Virol 83:581–593

    CrossRef  PubMed  Google Scholar 

  • Hegyi A, Ziebuhr J (2002) Conservation of substrate specificities among coronavirus main proteases. J Gen Virol 83:595–599

    CrossRef  PubMed  Google Scholar 

  • Herold J, Raabe T, Schelle-Prinz B, Siddell SG (1993) Nucleotide sequence of the human coronavirus 229E RNA polymerase locus. Virology 195:680–691

    CrossRef  CAS  PubMed  Google Scholar 

  • Herold J, Siddell SG (1993) An ‘elaborated’ pseudoknot is required for high frequency frameshifting during translation of HCV 229E polymerase mRNA. Nucleic Acids Res 21:5838–5842

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Herold J, Gorbalenya AE, Thiel V, Schelle B, Siddell SG (1998) Proteolytic processing at the amino terminus of human coronavirus 229E gene 1-encoded polyproteins: identification of a papain-like proteinase and its substrate. J Virol 72:910–918

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Herold J, Siddell SG, Gorbalenya AE (1999) A human RNA viral cysteine proteinase that depends upon a unique Zn2+-binding finger connecting the two domains of a papain-like fold. J Biol Chem 274:14918–14925

    CrossRef  CAS  PubMed  Google Scholar 

  • Heusipp G, Grötzinger C, Herold J, Siddell SG, Ziebuhr J (1997a) Identification and subcellular localization of a 41 kDa, polyprotein 1ab processing product in human coronavirus 229E-infected cells. J Gen Virol 78:2789–2794

    CrossRef  CAS  PubMed  Google Scholar 

  • Heusipp G, Harms U, Siddell SG, Ziebuhr J (1997b) Identification of an ATPase activity associated with a 71-kilodalton polypeptide encoded in gene 1 of the human coronavirus 229E. J Virol 71:5631–5634

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes SA, Bonilla PJ, Weiss SR (1995) Identification of the murine coronavirus p28 cleavage site. J Virol 69:809–813

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Ivanov KA, Thiel V, Dobbe JC, van der Meer Y, Snijder EJ, Ziebuhr J (2004) Multiple enzymatic activities associated with severe acute respiratory syndrome coronavirus helicase. J Virol 78:5619–5632

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Ivanov KA, Ziebuhr J (2004) Human coronavirus nonstructural protein 13: characterization of duplex-unwinding, (deoxy)nucleoside triphosphatase, and RNA 50-triphosphatase activities. J Virol 78:7833–7838

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Kadaré G, Haenni AL (1997) Virus-encoded RNA helicases. J Virol 71:2583–2590

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Kanjanahaluethai A, Baker SC (2000) Identification of mouse hepatitis virus papain-like proteinase 2 activity. J Virol 74:7911–7921

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanjanahaluethai A, Jukneliene D, Baker SC (2003) Identification of the murine coronavirus MP1 cleavage site recognized by papain-like proteinase 2. J Virol 77:7376–7382

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan AR, Khazanovich-Bernstein N, Bergmann EM, James MN (1999) Structural aspects of activation pathways of aspartic protease zymogens and viral 3C protease precursors. Proc Natl Acad Sci USA 96:10968–10975

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JC, Spence RA, Currier PF, Lu X, Denison MR (1995) Coronavirus protein processing and RNA synthesis is inhibited by the cysteine proteinase inhibitor E64d. Virology 208:1–8

    CrossRef  CAS  PubMed  Google Scholar 

  • Kiss T (2001) Small nucleolar RNA-guided post-transcriptional modification of cellular RNAs. EMBO J 20:3617–3622

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Kocherhans R, Bridgen A, Ackermann M, Tobler K (2001) Completion of the porcine epidemic diarrhoea coronavirus (PEDV) genome sequence. Virus Genes 23:137–144

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Koonin EV (1991) The phylogeny of RNA-dependent RNA polymerases of positive-strand RNA viruses. J Gen Virol 72:2197–2206

    CrossRef  PubMed  Google Scholar 

  • Koonin EV, Dolja VV (1993) Evolution and taxonomy of positive-strand RNA viruses: implications of comparative analysis of amino acid sequences. Crit Rev Biochem Mol Biol 28:375–430

    CrossRef  CAS  PubMed  Google Scholar 

  • Kräusslich HG, Wimmer E (1988) Viral proteinases. Annu Rev Biochem 57:701–754

    CrossRef  PubMed  Google Scholar 

  • Kujala P, Ikäheimonen A, Ehsani N, Vihinen H, Auvinen P, Kääriäinen L (2001) Biogenesis of the Semliki Forest virus RNA replication complex. J Virol 75:3873–3884

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwong AD, Kim JL, Lin C (2000) Structure and function of hepatitis C virus NS3 helicase. Curr Top Microbiol Immunol 242:171–196

    CAS  PubMed  Google Scholar 

  • Laakkonen P, Ahola T, Kääriäinen L (1996) The effects of palmitoylation on membrane association of Semliki forest virus RNA capping enzyme. J Biol Chem 271:28567–28571

    CrossRef  CAS  PubMed  Google Scholar 

  • Lai MM, Patton CD, Baric RS, Stohlman SA (1983) Presence of leader sequences in the mRNA of mouse hepatitis virus. J Virol 46:1027–1033

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Lai MM, Cavanagh D (1997) The molecular biology of coronaviruses. Adv Virus Res 48:1–10

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Laneve P, Altieri F, Fiori ME, Scaloni A, Bozzoni I, Caffarelli E (2003) Purification, cloning, and characterization of XendoU, a novel endoribonuclease involved in processing of intron-encoded small nucleolar RNAs in Xenopus laevis. J Biol Chem 278:13026–13032

    CrossRef  CAS  PubMed  Google Scholar 

  • Lee HJ, Shieh CK, Gorbalenya AE, Koonin EV, La Monica N, Tuler J, Bagdzhadzhyan A, Lai MM (1991) The complete sequence (22 kilobases) of murine coronavirus gene 1 encoding the putative proteases and RNA polymerase. Virology 180:567–582

    CrossRef  CAS  PubMed  Google Scholar 

  • Lemm JA, Rümenapf T, Strauss EG, Strauss JH, Rice CM (1994) Polypeptide requirements for assembly of functional Sindbis virus replication complexes: a model for the temporal regulation of minus-and plus-strand RNA synthesis. EMBO J 13:2925–2934

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim KP, Liu DX (1998) Characterization of the two overlapping papain-like proteinase domains encoded in gene 1 of the coronavirus infectious bronchitis virus and determination of the C-terminal cleavage site of an 87-kDa protein. Virology 245:303–312

    CrossRef  CAS  PubMed  Google Scholar 

  • Lim KP, Ng LF, Liu DX (2000) Identification of a novel cleavage activity of the first papain-like proteinase domain encoded by open reading frame 1a of the coronavirus avian infectious bronchitis virus and characterization of the cleavage products. J Virol 74:1674–1685

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu C, Xu HY, Liu DX (2001) Induction of caspase-dependent apoptosis in cultured cells by the avian coronavirus infectious bronchitis virus. J Virol 75:6402–6409

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu DX, Brown TD (1995) Characterisation and mutational analysis of an ORF 1a-encoding proteinase domain responsible for proteolytic processing of the infectious bronchitis virus 1a/1b polyprotein. Virology 209:420–427

    CrossRef  CAS  PubMed  Google Scholar 

  • Lu X, Lu Y, Denison MR (1996) Intracellular and in vitro-translated 27-kDa proteins contain the 3C-like proteinase activity of the coronavirus MHV-A59. Virology 222:375–382

    CrossRef  CAS  PubMed  Google Scholar 

  • Lu Y, Denison MR (1997) Determinants of mouse hepatitis virus 3C-like proteinase activity. Virology 230:335–342

    CrossRef  CAS  PubMed  Google Scholar 

  • Mackenzie JM, Jones MK, Westaway EG (1999) Markers for trans-Golgi membranes and the intermediate compartment localize to induced membranes with distinct replication functions in flavivirus-infected cells. J Virol 73:9555–9567

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Marra MA, Jones SJ, Astell CR, Holt RA, Brooks-Wilson A, Butterfield YS, Khattra J, Asano JK, Barber SA, Chan SY, Cloutier A, Coughlin SM, Freeman D, Girn N, Griffith OL, Leach SR, Mayo M, McDonald H, Montgomery SB, Pandoh PK, Petrescu AS, Robertson AG, Schein JE, Siddiqui A, Smailus DE, Stott JM, Yang GS, Plummer F, Andonov A, Artsob H, Bastien N, Bernard K, Booth TF, Bowness D, Czub M, Drebot M, Fernando L, Flick R, Garbutt M, Gray M, Grolla A, Jones S, Feldmann H, Meyers A, Kabani A, Li Y, Normand S, Stroher U, Tipples GA, Tyler S, Vogrig R, Ward D, Watson B, Brunham RC, Krajden M, Petric M, Skowronski DM, Upton C, Roper RL (2003) The genome sequence of the SARS-associated coronavirus. Science 300:1399–1404

    CrossRef  CAS  PubMed  Google Scholar 

  • Martzen MR, McCraith SM, Spinelli SL, Torres FM, Fields S, Grayhack EJ, Phizicky EM (1999) A biochemical genomics approach for identifying genes by the activity of their products. Science 286:1153–1155

    CrossRef  CAS  PubMed  Google Scholar 

  • Matthews DA, Smith WW, Ferre RA, Condon B, Budahazi G, Sisson W, Villafranca JE, Janson CA, McElroy HE, Gribskov CL, et al. (1994) Structure of human rhinovirus 3C protease reveals a trypsin-like polypeptide fold, RNA-binding site, and means for cleaving precursor polyprotein. Cell 77:761–771

    CrossRef  CAS  PubMed  Google Scholar 

  • Miller DJ, Schwartz MD, Ahlquist P (2001) Flock house virus RNA replicates on outer mitochondrial membranes in Drosophila cells. J Virol 75:11664–11676

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Mills DR, Priano C, DiMauro P, Binderow BD (1989) Q beta replicase: mapping the functional domains of an RNA-dependent RNA polymerase. J Mol Biol 205:751–764

    CrossRef  CAS  PubMed  Google Scholar 

  • Mosimann SC, Cherney MM, Sia S, Plotch S, James MN (1997) Refined X-ray crystallographic structure of the poliovirus 3C gene product. J Mol Biol 273:1032–1047

    CrossRef  CAS  PubMed  Google Scholar 

  • Nasr F, Filipowicz W (2000) Characterization of the Saccharomyces cerevisiae cyclic nucleotide phosphodiesterase involved in the metabolism of ADP-ribose 1″,2″-cyclic phosphate. Nucleic Acids Res 28:1676–1683

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Ng LF, Liu DX (2000) Further characterization of the coronavirus infectious bronchitis virus 3C-like proteinase and determination of a new cleavage site. Virology 272:27–39

    CrossRef  CAS  PubMed  Google Scholar 

  • Ng LF, Liu DX (2002) Membrane association and dimerization of a cysteine-rich, 16-kilodalton polypeptide released from the C-terminal region of the coronavirus infectious bronchitis virus 1a polyprotein. J Virol 76:6257–6267

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Pang PS, Jankowsky E, Planet PJ, Pyle AM (2002) The hepatitis C viral NS3 protein is a processive DNA helicase with cofactor enhanced RNA unwinding. EMBO J 21:1168–1176

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Pedersen KW, van der Meer Y, Roos N, Snijder EJ (1999) Open reading frame 1a-encoded subunits of the arterivirus replicase induce endoplasmic reticulum-derived double-membrane vesicles which carry the viral replication complex. J Virol 73:2016–2026

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Penzes Z, González JM, Calvo E, Izeta A, Smerdou C, Mendez A, Sánchez CM, Sola I., Almazán F, Enjuanes L (2001) Complete genome sequence of transmissible gastroenteritis coronavirus PUR46-MAD clone and evolution of the Purdue virus cluster. Virus Genes 23:105–118

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Peränen J, Kääriäinen L (1991) Biogenesis of type I cytopathic vacuoles in Semliki Forest virus-infected BHK cells. J Virol 65:1623–1627

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Peränen J, Laakkonen P, Hyvönen M, Kääriäinen L (1995) The alphavirus replicase protein nsP1 is membrane-associated and has affinity to endocytic organelles. Virology 208:610–620

    CrossRef  PubMed  Google Scholar 

  • Piñon JD, Mayreddy RR, Turner JD, Khan FS, Bonilla PJ, Weiss SR (1997) Efficient autoproteolytic processing of the MHV-A59 3C-like proteinase from the flanking hydrophobic domains requires membranes. Virology 230:309–322

    CrossRef  PubMed  Google Scholar 

  • Piñon JD, Teng H, Weiss SR (1999) Further requirements for cleavage by the murine coronavirus 3C-like proteinase: identification of a cleavage site within ORF1b. Virology 263:471–484

    CrossRef  PubMed  CAS  Google Scholar 

  • Plotch SJ, Palant O, Gluzman Y (1989) Purification and properties of poliovirus RNA polymerase expressed in Escherichia coli. J Virol 63:216–225

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Restrepo-Hartwig M, Ahlquist P (1999) Brome mosaic virus RNA replication proteins 1a and 2a colocalize and 1a independently localizes on the yeast endoplasmic reticulum. J Virol 73:10303–10309

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Restrepo-Hartwig MA, Ahlquist P (1996) Brome mosaic virus helicase-and polymerase-like proteins colocalize on the endoplasmic reticulum at sites of viral RNA synthesis. J Virol 70:8908–8916

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Rota PA, Oberste MS, Monroe SS, Nix WA, Campagnoli R, Icenogle JP, Penaranda S, Bankamp B, Maher K, Chen MH, Tong S, Tamin A, Lowe L, Frace M, DeRisi JL, Chen Q, Wang D, Erdman DD, Peret TC, Burns C, Ksiazek TG, Rollin PE, Sanchez A, Liffick S, Holloway B, Limor J, McCaustland K, Olsen-Rasmussen M, Fouchier R, Gunther S, Osterhaus AD, Drosten C, Pallansch MA, Anderson LJ, Bellini WJ (2003) Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science 300:1394–1399

    CrossRef  CAS  PubMed  Google Scholar 

  • Ruan YJ, Wei CL, Ee AL, Vega VB, Thoreau H, Su ST, Chia JM, Ng P, Chiu KP, Lim L, Zhang T, Peng CK, Lin EO, Lee NM, Yee SL, Ng LF, Chee RE, Stanton LW, Long PM, Liu ET (2003) Comparative full-length genome sequence analysis of 14 SARS coronavirus isolates and common mutations associated with putative origins of infection. Lancet 361:1779–1785

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Russo M, Di Franco A, Martelli GP (1983) The fine structure of Cymbidium ringspot virus infections in host tissues. III. Role of peroxisomes in the genesis of multivesicular bodies. J Ultrastruct Res 82:52–63

    CrossRef  CAS  PubMed  Google Scholar 

  • Ryan MD, Flint M (1997) Virus-encoded proteinases of the picornavirus supergroup. J Gen Virol 78:699–723

    CrossRef  CAS  PubMed  Google Scholar 

  • Sawicki D, Wang T, Sawicki S (2001) The RNA structures engaged in replication and transcription of the A59 strain of mouse hepatitis virus. J Gen Virol 82:385–396

    CrossRef  CAS  PubMed  Google Scholar 

  • Sawicki SG, Sawicki DL (1990) Coronavirus transcription: subgenomic mouse hepatitis virus replicative intermediates function in RNA synthesis. J Virol 64:1050–1056

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaad MC, Baric RS (1994) Genetics of mouse hepatitis virus transcription: evidence that subgenomic negative strands are functional templates. J Virol 68:8169–8179

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaad MC, Jensen PE, Carrington JC (1997) Formation of plant RNA virus replication complexes on membranes: role of an endoplasmic reticulum-targeted viral protein. EMBO J 16:4049–4059

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Schiller JJ, Kanjanahaluethai A, Baker SC (1998) Processing of the coronavirus MHV-JHM polymerase polyprotein: identification of precursors and proteolytic products spanning 400 kilodaltons of ORF1a. Virology 242:288–302

    CrossRef  CAS  PubMed  Google Scholar 

  • Schlegel A, Giddings TH, Jr., Ladinsky MS, Kirkegaard K (1996) Cellular origin and ultrastructure of membranes induced during poliovirus infection. J Virol 70:6576–6588

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt-Mende J, Bieck E, Hügle T, Penin F, Rice CM, Blum HE, Moradpour D (2001) Determinants for membrane association of the hepatitis C virus RNA-dependent RNA polymerase. J Biol Chem 276:44052–44063

    CrossRef  CAS  PubMed  Google Scholar 

  • Schwartz M, Chen J, Janda M, Sullivan M, den Boon J, Ahlquist P (2002) A positive-strand RNA virus replication complex parallels form and function of retrovirus capsids. Mol Cell 9:505–514

    CrossRef  CAS  PubMed  Google Scholar 

  • Seipelt J, Guarne A, Bergmann E, James M, Sommergruber W, Fita I, Skern T (1999) The structures of picornaviral proteinases. Virus Res 62:159–168

    CrossRef  CAS  PubMed  Google Scholar 

  • Sethna PB, Hung SL, Brian DA (1989) Coronavirus subgenomic minus-strand RNAs and the potential for mRNA replicons. Proc Natl Acad Sci USA 86:5626–5630

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Sethna PB, Brian DA (1997) Coronavirus genomic and subgenomic minus-strand RNAs copartition in membrane-protected replication complexes. J Virol 71:7744–7749

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Seybert A, Hegyi A, Siddell SG, Ziebuhr J (2000a) The human coronavirus 229E superfamily 1 helicase has RNA and DNA duplex-unwinding activities with 5′-to-3′ polarity. RNA 6:1056–1068

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Seybert A, van Dinten LC, Snijder EJ, Ziebuhr J (2000b) Biochemical characterization of the equine arteritis virus helicase suggests a close functional relationship between arterivirus and coronavirus helicases. J Virol 74:9586–9593

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Seybert A, Ziebuhr J (2001) Guanosine triphosphatase activity of the human coronavirus helicase. Adv Exp Med Biol 494:255–260

    CrossRef  CAS  PubMed  Google Scholar 

  • Shi ST, Schiller JJ, Kanjanahaluethai A, Baker SC, Oh JW, Lai MM (1999) Colocalization and membrane association of murine hepatitis virus gene 1 products and de novo-synthesized viral RNA in infected cells. J Virol 73:5957–5969

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Siddell S, Sawicki D, Meyer Y, Thiel V, Sawicki S (2001) Identification of the mutations responsible for the phenotype of three MHV RNA-negative ts mutants. Adv Exp Med Biol 494:453–458

    CrossRef  CAS  PubMed  Google Scholar 

  • Siddell SG. (1995). The Coronaviridae: an introduction. In “The Coronaviridae” (Siddell SG, ed.), pp. 1–10. Plenum Press, New York.

    CrossRef  Google Scholar 

  • Sims AC, Ostermann J, Denison MR (2000) Mouse hepatitis virus replicase proteins associate with two distinct populations of intracellular membranes. J Virol 74:5647–5654

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Snijder EJ, den Boon JA, Bredenbeek PJ, Horzinek MC, Rijnbrand R, Spaan WJ (1990a) The carboxyl-terminal part of the putative Berne virus polymerase is expressed by ribosomal frameshifting and contains sequence motifs which indicate that toro-and coronaviruses are evolutionarily related. Nucleic Acids Res 18:4535–4542

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Snijder EJ, Horzinek MC (1993) Toroviruses: replication, evolution and comparison with other members of the coronavirus-like superfamily. J Gen Virol 74:2305–2316

    CrossRef  CAS  PubMed  Google Scholar 

  • Snijder EJ, Meulenberg JJ (1998) The molecular biology of arteriviruses. J Gen Virol 79:961–979

    CrossRef  CAS  PubMed  Google Scholar 

  • Snijder EJ, van Tol H, Roos N, Pedersen KW (2001) Non-structural proteins 2 and 3 interact to modify host cell membranes during the formation of the arterivirus replication complex. J Gen Virol 82:985–994

    CrossRef  CAS  PubMed  Google Scholar 

  • Snijder EJ, Bredenbeek PJ, Dobbe JC, Thiel V, Ziebuhr J, Poon LL, Guan Y, Rozanov M, Spaan WJ, Gorbalenya AE (2003) Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. J Mol Biol 331:991–1004

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Spaan W, Delius H, Skinner M, Armstrong J, Rottier P, Smeekens S, van der Zeijst BA, Siddell SG (1983) Coronavirus mRNA synthesis involves fusion of non-contiguous sequences. EMBO J 2:1839–1844

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Stinchcombe JC, Griffiths GM (1999) Regulated secretion from hemopoietic cells. J Cell Biol 147:1–6

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Strauss JH, Strauss EG (1988) Evolution of RNA viruses. Annu Rev Microbiol 42:657–683

    CrossRef  CAS  PubMed  Google Scholar 

  • Tanner JA, Watt RM, Chai YB, Lu LY, Lin MC, Peiris JS, Poon LL, Kung HF, Huang JD (2003) The severe acute respiratory syndrome (SARS) coronavirus NTPase/helicase belongs to a distinct class of 5′ to 3′ viral helicases. J Biol Chem 278:39578–39582

    CrossRef  CAS  PubMed  Google Scholar 

  • Teng H, Piñon JD, Weiss SR (1999) Expression of murine coronavirus recombinant papain-like proteinase: efficient cleavage is dependent on the lengths of both the substrate and the proteinase polypeptides. J Virol 73:2658–2666

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Teterina NL, Bienz K, Egger D, Gorbalenya AE, Ehrenfeld E (1997) Induction of intracellular membrane rearrangements by HAV proteins 2C and 2BC. Virology 237:66–77

    CrossRef  CAS  PubMed  Google Scholar 

  • Thiel V, Herold J, Schelle B, Siddell SG (2001a) Infectious RNA transcribed in vitro from a cDNA copy of the human coronavirus genome cloned in vaccinia virus. J Gen Virol 82:1273–1281

    CrossRef  CAS  PubMed  Google Scholar 

  • Thiel V, Herold J, Schelle B, Siddell SG (2001b) Viral replicase gene products suffice for coronavirus discontinuous transcription. J Virol 75:6676–6681

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Thiel V, Ivanov KA, Putics A, Hertzig T, Schelle B, Bayer S, Weissbrich B, Snijder EJ, Rabenau H, Doerr HW, Gorbalenya AE, Ziebuhr J (2003) Mechanisms and enzymes involved in SARS coronavirus genome expression. J Gen Virol 84:2305–2315

    CrossRef  CAS  PubMed  Google Scholar 

  • Tibbles KW, Brierley I, Cavanagh D, Brown TD (1996) Characterization in vitro of an autocatalytic processing activity associated with the predicted 3C-like proteinase domain of the coronavirus avian infectious bronchitis virus. J Virol 70:1923–1930

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Tibbles KW, Cavanagh D, Brown TD (1999) Activity of a purified His-tagged 3C-like proteinase from the coronavirus infectious bronchitis virus. Virus Res. 60:137–145

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Tijms MA, van Dinten LC, Gorbalenya AE, Snijder EJ (2001) A zinc finger-containing papain-like protease couples subgenomic mRNA synthesis to genome translation in a positive-stranded RNA virus. Proc Natl Acad Sci USA 98:1889–1894

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • van der Meer Y, van Tol H, Krijnse Locker J, Snijder EJ (1998) ORF1a-encoded replicase subunits are involved in the membrane association of the arterivirus replication complex. J Virol 72:6689–6698

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • van der Meer Y, Snijder EJ, Dobbe JC, Schleich S, Denison MR, Spaan WJ, Krijnse Locker J (1999) Localization of mouse hepatitis virus nonstructural proteins and RNA synthesis indicates a role for late endosomes in viral replication. J Virol 73:7641–7657

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • van Dinten LC, Rensen S, Gorbalenya AE, Snijder EJ (1999) Proteolytic processing of the open reading frame 1b-encoded part of arterivirus replicase is mediated by nsp4 serine protease and Is essential for virus replication. J Virol 73:2027–2037

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • van Dinten LC, van Tol H, Gorbalenya AE, Snijder EJ (2000) The predicted metal-binding region of the arterivirus helicase protein is involved in subgenomic mRNA synthesis, genome replication, and virion biogenesis. J Virol 74:5213–5223

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • van Kuppeveld FJ, Galama JM, Zoll J, Melchers WJ (1995) Genetic analysis of a hydrophobic domain of coxsackie B3 virus protein 2B: a moderate degree of hydrophobicity is required for a cis-acting function in viral RNA synthesis. J Virol 69:7782–7790.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Vasiljeva L, Merits A, Golubtsov A, Sizemskaja V, Kaariainen L, Ahola T (2003) Regulation of the sequential processing of Semliki Forest virus replicase polyprotein. J Biol Chem 278:41636–41645

    CrossRef  CAS  PubMed  Google Scholar 

  • Wang T, Sawicki SG (2001) Mouse hepatitis virus minus-strand templates are unstable and turnover during viral replication. Adv Exp Med Biol 494:491–497

    CrossRef  CAS  PubMed  Google Scholar 

  • Xu HY, Lim KP, Shen S, Liu DX (2001) Further identification and characterization of novel intermediate and mature cleavage products released from the ORF 1b region of the avian coronavirus infectious bronchitis virus 1a/1b polyprotein. Virology 288:212–222

    CrossRef  CAS  PubMed  Google Scholar 

  • Yount B, Curtis KM, Baric RS (2000) Strategy for systematic assembly of large RNA and DNA genomes: transmissible gastroenteritis virus model. J Virol 74:10600–10611

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Yount B, Denison MR, Weiss SR, Baric RS (2002) Systematic assembly of a full-length infectious cDNA of mouse hepatitis virus strain A59. J Virol 76:11065–11078

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Yount B, Curtis KM, Fritz EA, Hensley LE, Jahrling PB, Prentice E, Denison MR, Geisbert TW, Baric RS (2003) Reverse genetics with a full-length infectious cDNA of severe acute respiratory syndrome coronavirus. Proc Natl Acad Sci USA 100:12995–13000

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Ziebuhr J, Herold J, Siddell SG (1995) Characterization of a human coronavirus (strain 229E) 3C-like proteinase activity. J Virol 69:4331–4338

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Ziebuhr J, Heusipp G, Siddell SG (1997) Biosynthesis, purification, and characterization of the human coronavirus 229E 3C-like proteinase. J Virol 71:3992–3997

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Ziebuhr J, Siddell SG (1999) Processing of the human coronavirus 229E replicase polyproteins by the virus-encoded 3C-like proteinase: identification of proteolytic products and cleavage sites common to pp1a and pp1ab. J Virol 73:177–185

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Ziebuhr J, Snijder EJ, Gorbalenya AE (2000) Virus-encoded proteinases and proteolytic processing in the Nidovirales. J Gen Virol 81:853–879

    CrossRef  CAS  PubMed  Google Scholar 

  • Ziebuhr J, Thiel V, Gorbalenya AE (2001) The autocatalytic release of a putative RNA virus transcription factor from its polyprotein precursor involves two paralogous papain-like proteases that cleave the same peptide bond. J Biol Chem 276:33220–33232

    CrossRef  CAS  PubMed  Google Scholar 

  • Ziebuhr J, Bayer S, Cowley JA, Gorbalenya AE (2003) The 3C-like proteinase of an invertebrate nidovirus links coronavirus and potyvirus homologs. J Virol 77:1415–1426

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuo Y, Deutscher MP (2001) Exoribonuclease superfamilies: structural analysis and phylogenetic distribution. Nucleic Acids Res 29:1017–1026

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Institute of Virology and Immunology, University of Würzburg, Versbacher Str. 7, 97078, Würzburg, Germany

    J. Ziebuhr

Authors
  1. J. Ziebuhr
    View author publications

    You can also search for this author in PubMed Google Scholar

Editor information

Editors and Affiliations

  1. Department of Molecular and Cell Biology, Centro Nacional de Biotecnología, Campus Universidad Autónoma, Cantoblanco, 38049, Madrid, Spain

    Professor Dr. Luis Enjuanes

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer-Verlag

About this chapter

Cite this chapter

Ziebuhr, J. (2005). The Coronavirus Replicase. In: Enjuanes, L. (eds) Coronavirus Replication and Reverse Genetics. Current Topics in Microbiology and Immunology, vol 287. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26765-4_3

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/3-540-26765-4_3

  • Published: 25 October 2005

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21494-6

  • Online ISBN: 978-3-540-26765-2

  • eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not logged in - 34.238.189.240

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.