Trafficking of Viral Membrane Proteins

  • R. Byland
  • M. Marsh
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 285)


Many viruses express membrane proteins. For enveloped viruses in particular, membrane proteins are frequently structural components of the virus that mediate the essential tasks of receptor recognition and membrane fusion. The functional activities of these proteins require that they are sorted correctly in infected cells. These sorting events often depend on the ability of the virus to mimic cellular protein trafficking signals and to interact with the cellular trafficking machinery. Importantly, loss or modification of these signals can influence virus infectivity and pathogenesis.


Cytoplasmic Domain Varicella Zoster Virus Simian Immunodeficiency Virus Sorting Signal Acidic Cluster 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alconada, A., Bauer, U., Baudoux, L., Piette, J., and Hoflack, B. (1998) Intracellular transport of the glycoproteins gE and gI of the varicella-zoster virus. gE accelerates the maturation of gI and determines its accumulation in the trans-Golgi network. J Biol Chem 273:13430–13436CrossRefPubMedGoogle Scholar
  2. Alconada, A., Bauer, U., and Hoflack, B. (1996) A tyrosine-based motif and a casein kinase II phosphorylation site regulate the intracellular trafficking of the varicella-zoster virus glycoprotein I, a protein localized in the trans-Golgi network. EMBO J 15:6096–6110PubMedGoogle Scholar
  3. Alconada, A., Bauer, U., Sodeik, B., and Hoflack, B. (1999) Intracellular traffic of herpes simplex virus glycoprotein gE: characterization of the sorting signals required for its trans-Golgi network localization. J Virol 73:377–387PubMedGoogle Scholar
  4. Aridor, M., and Traub, L. M. (2002) Cargo selection in vesicular transport: the making and breaking of a coat. Traffic 3:537–546CrossRefPubMedGoogle Scholar
  5. Bache, K. G., Brech, A., Mehlum, A., and Stenmark, H. (2003) Hrs regulates multi-vesicular body formation via ESCRT recruitment to endosomes. J Cell Biol 162:435–442CrossRefPubMedGoogle Scholar
  6. Bangham, C. R. (2003) The immune control and cell-to-cell spread of human T-lymphotropic virus type 1. J Gen Virol 84:3177–89CrossRefPubMedGoogle Scholar
  7. Batonick, M., Zampieri, C., Honing, S., Spearman, P., and Thali, M. (2003) HIV-1 particle release is increased in cells expressing non-functional clathrin-associated adaptor AP-2. Paper presented at: Retroviruses (Cold Spring Harbor Laboratory, Cold Spring Harbor, NY), p33Google Scholar
  8. Beisser, P. S., Goh, C. S., Cohen, F. E., and Michelson, S. (2002) Viral chemokine receptors and chemokines in human cytomegalovirus trafficking and interaction with the immune system. CMV chemokine receptors. Curr Top Microbiol Immunol 269:203–234PubMedGoogle Scholar
  9. Berlioz-Torrent, C., Shacklett, B. L., Erdtmann, L., Delamarre, L., Bouchaert, I., Sonigo, P., Dokhelar, M. C., and Benarous, R. (1999) Interactions of the cytoplasmic domains of human and simian retroviral transmembrane proteins with components of the clathrin adaptor complexes modulate intracellular and cell surface expression of envelope glycoproteins. J Virol 73:1350–1361PubMedGoogle Scholar
  10. Bijlmakers, M. J., and Marsh, M. (2003) The on-off story of protein palmitoylation. Trends Cell Biol 13:32–42CrossRefPubMedGoogle Scholar
  11. Blasco, R., and Moss, B. (1991) Extracellular vaccinia virus formation and cell-to-cell virus transmission are prevented by deletion of the gene encoding the 37,000-Dalton outer envelope protein. J Virol 65:5910–5920PubMedGoogle Scholar
  12. Blot, G., Janvier, K., Le Panse, S., Benarous, R., and Berlioz-Torrent, C. (2003) Targeting of the human immunodeficiency virus type 1 envelope to the trans-Golgi network through binding to TIP47 is required for env incorporation into virions and infectivity. J Virol 77:6931–6945CrossRefPubMedGoogle Scholar
  13. Boge, M., Wyss, S., Bonifacino, J. S., and Thali, M. (1998) A membrane-proximal tyrosine-based signal mediates internalization of the HIV-1 envelope glycoprotein via interaction with the AP-2 clathrin adaptor. J Biol Chem 273:15773–15778CrossRefPubMedGoogle Scholar
  14. Bonifacino, J. S. (2004) The GGA proteins: adaptors on the move. Nat Rev Mol Cell Biol 5:23–32CrossRefPubMedGoogle Scholar
  15. Bonifacino, J. S., and Dell'Angelica, E. C. (1999) Molecular bases for the recognition of tyrosine-based sorting signals. J Cell Biol 145:923–926CrossRefPubMedGoogle Scholar
  16. Bonifacino, J. S., and Glick, B. S. (2004) The mechanisms of vesicle budding and fusion. Cell 116:153–166CrossRefPubMedGoogle Scholar
  17. Bonifacino, J. S., Marks, M. S., Ohno, H., and Kirchhausen, T. (1996) Mechanisms of signal-mediated protein sorting in the endocytic and secretory pathways. Proc Assoc Am Physicians 108:285–295PubMedGoogle Scholar
  18. Bonifacino, J. S., and Traub, L. M. (2003) Signals for sorting of transmembrane proteins to endosomes and lysosomes. Annu Rev Biochem 72:395–447CrossRefPubMedGoogle Scholar
  19. Boulan, E. R., and Pendergast, M. (1980) Polarized distribution of viral envelope proteins in the plasma membrane of infected epithelial cells. Cell 20:45–54CrossRefPubMedGoogle Scholar
  20. Bowers, K., Pelchen-Matthews, A., Honing, S., Vance, P. J., Creary, L., Haggarty, B. S., Romano, J., Ballensiefen, W., Hoxie, J. A., and Marsh, M. (2000) The simian immunodeficiency virus envelope glycoprotein contains multiple signals that regulate its cell surface expression and endocytosis. Traffic 1:661–674CrossRefPubMedGoogle Scholar
  21. Bretscher, M. S., and Munro, S. (1993) Cholesterol and the Golgi apparatus. Science 261:1280–1281PubMedGoogle Scholar
  22. Britt, W. J., and Mach, M. (1996) Human cytomegalovirus glycoproteins. Intervirology 39:401–412PubMedGoogle Scholar
  23. Canfield, W. M., Johnson, K. F., Ye, R. D., Gregory, W., and Kornfeld, S. (1991) Localization of the signal for rapid internalization of the bovine cation-independent mannose 6-phosphate/insulin-like growth factor-II receptor to amino acids 24–29 of the cytoplasmic tail. J Biol Chem 266:5682–5688PubMedGoogle Scholar
  24. Chen, S. Y., Matsuoka, Y., and Compans, R. W. (1991) Golgi complex localization of the Punta Toro virus G2 protein requires its association with the G1 protein. Virology 183:351–365CrossRefPubMedGoogle Scholar
  25. Chen, W. J., Goldstein, J. L., and Brown, M. S. (1990) NPXY, a sequence often found in cytoplasmic tails, is required for coated pit-mediated internalization of the low density lipoprotein receptor. J Biol Chem 265:3116–3123PubMedGoogle Scholar
  26. Collawn, J. F., Stangel, M., Kuhn, L. A., Esekogwu, V., Jing, S. Q., Trowbridge, I. S., and Tainer, J. A. (1990) Transferrin receptor internalization sequence YXRF implicates a tight turn as the structural recognition motif for endocytosis. Cell 63:1061–1072CrossRefPubMedGoogle Scholar
  27. Collins, B. M., McCoy, A. J., Kent, H. M., Evans, P. R., and Owen, D. J. (2002) Molecular architecture and functional model of the endocytic AP2 complex. Cell 109:523–535CrossRefPubMedGoogle Scholar
  28. Conner, S. D., and Schmid, S. L. (2002) Identification of an adaptor-associated kinase, AAK1, as a regulator of clathrin-mediated endocytosis. J Cell Biol 156:921–929CrossRefPubMedGoogle Scholar
  29. Conner, S. D., Schroter, T., and Schmid, S. L. (2003) AAK1-Mediated micro2 phosphorylation is stimulated by assembled clathrin. Traffic 4:885–890CrossRefPubMedGoogle Scholar
  30. Cosson, P. (1996) Direct interaction between the envelope and matrix proteins of HIV-1. EMBO J 15:5783–5788PubMedGoogle Scholar
  31. Davis, C. G., van Driel, I. R., Russell, D. W., Brown, M. S., and Goldstein, J. L. (1987) The low density lipoprotein receptor. Identification of amino acids in cytoplasmic domain required for rapid endocytosis. J Biol Chem 262:4075–4082PubMedGoogle Scholar
  32. Delamarre, L., Rosenberg, A. R., Pique, C., Pham, D., and Dokhelar, M. C. (1997) A novel human T-leukemia virus type 1 cell-to-cell transmission assay permits definition of SU glycoprotein amino acids important for infectivity. J Virol 71:259–266PubMedGoogle Scholar
  33. Derse, D., Hill, S. A., Lloyd, P. A., Chung, H., and Morse, B. A. (2001) Examining human T-lymphotropic virus type 1 infection and replication by cell-free infection with recombinant virus vectors. J Virol 75:8461–8468CrossRefPubMedGoogle Scholar
  34. Diaz, E., and Pfeffer, S. R. (1998) TIP47: a cargo selection device for mannose 6-phosphate receptor trafficking. Cell 93:433–443CrossRefPubMedGoogle Scholar
  35. Dingwell, K. S., and Johnson, D. C. (1998) The herpes simplex virus gE-gI complex facilitates cell-to-cell spread and binds to components of cell junctions. J Virol 72:8933–8942PubMedGoogle Scholar
  36. Doms, R. W., Ruusala, A., Machamer, C., Helenius, J., Helenius, A., and Rose, J. K. (1988) Differential effects of mutations in three domains on folding, quaternary structure, and intracellular transport of vesicular stomatitis virus G protein. J Cell Biol 107:89–99CrossRefPubMedGoogle Scholar
  37. Engelstad, M., and Smith, G. L. (1993) The vaccinia virus 42-kDa envelope protein is required for the envelopment and egress of extracellular virus and for virus virulence. Virology 194:627–637CrossRefPubMedGoogle Scholar
  38. Fan, Z., Grantham, M. L., Smith, M. S., Anderson, E. S., Cardelli, J. A., and Muggeridge, M. I. (2002) Truncation of herpes simplex virus type 2 glycoprotein B increases its cell surface expression and activity in cell-cell fusion, but these properties are unrelated. J Virol 76:9271–9283CrossRefPubMedGoogle Scholar
  39. Forghani, B., Ni, L., and Grose, C. (1994) Neutralization epitope of the varicella-zoster virus gH:gL glycoprotein complex. Virology 199:458–462CrossRefPubMedGoogle Scholar
  40. Fraile-Ramos, A., Kledal, T. N., Pelchen-Matthews, A., Bowers, K., Schwartz, T. W., and Marsh, M. (2001) The human cytomegalovirus US28 protein is located in endocytic vesicles and undergoes constitutive endocytosis and recycling. Mol Biol Cell 12:1737–1749PubMedGoogle Scholar
  41. Fraile-Ramos, A., Kohout, T. A., Waldhoer, M., and Marsh, M. (2003) Endocytosis of the viral chemokine receptor US28 does not require beta-arrestins but is dependent on the clathrin-mediated pathway. Traffic 4:243–253PubMedGoogle Scholar
  42. Fraile-Ramos, A., Pelchen-Matthews, A., Kledal, T. N., Browne, H., Schwartz, T. W., and Marsh, M. (2002) Localization of HCMV UL33 and US27 in endocytic compartments and viral membranes. Traffic 3:218–232CrossRefPubMedGoogle Scholar
  43. Freed, E. O. (2002) Viral late domains. J Virol 76:4679–4687CrossRefPubMedGoogle Scholar
  44. Fultz, P. N., Vance, P. J., Endres, M. J., Tao, B., Dvorin, J. D., Davis, I. C., Lifson, J. D., Montefiori, D. C., Marsh, M., Malim, M. H., and Hoxie, J. A. (2001) In vivo attenuation of simian immunodeficiency virus by disruption of a tyrosine-dependent sorting signal in the envelope glycoprotein cytoplasmic tail. J Virol 75:278–291CrossRefPubMedGoogle Scholar
  45. Galmiche, M. C., Goenaga, J., Wittek, R., and Rindisbacher, L. (1999) Neutralizing and protective antibodies directed against vaccinia virus envelope antigens. Virology 254:71–80CrossRefPubMedGoogle Scholar
  46. Ghosh, P., and Kornfeld, S. (2003a) AP-1 binding to sorting signals and release from clathrin-coated vesicles is regulated by phosphorylation. J Cell Biol 160:699–708CrossRefPubMedGoogle Scholar
  47. Ghosh, P., and Kornfeld, S. (2003b) Phosphorylation-induced conformational changes regulate GGAs 1 and 3 function at the trans-Golgi network. J Biol Chem 278:14543–14549CrossRefPubMedGoogle Scholar
  48. Gompels, U. A., Craxton, M. A., and Honess, R. W. (1988) Conservation of glycoprotein H (gH) in herpesviruses: nucleotide sequence of the gH gene from herpesvirus saimiri. J Gen Virol 69: 2819–2829PubMedGoogle Scholar
  49. He, G., Gupta, S., Yi, M., Michaely, P., Hobbs, H. H., and Cohen, J. C. (2002) ARH is a modular adaptor protein that interacts with the LDL receptor, clathrin, and AP-2. J Biol Chem 277:44044–44049CrossRefPubMedGoogle Scholar
  50. Heineman, T. C., and Hall, S. L. (2001) VZV gB endocytosis and Golgi localization are mediated by YXXphi motifs in its cytoplasmic domain. Virology 285:42–49CrossRefPubMedGoogle Scholar
  51. Heineman, T. C., Krudwig, N., and Hall, S. L. (2000) Cytoplasmic domain signal sequences that mediate transport of varicella-zoster virus gB from the endoplasmic reticulum to the Golgi. J Virol 74:9421–9430CrossRefPubMedGoogle Scholar
  52. Hirst, J., and Robinson, M. S. (1998) Clathrin and adaptors. Biochim Biophys Acta 1404:173–193CrossRefPubMedGoogle Scholar
  53. Hobman, T. C., Woodward, L., and Farquhar, M. G. (1995) Targeting of a heterodimeric membrane protein complex to the Golgi: rubella virus E2 glycoprotein contains a transmembrane Golgi retention signal. Mol Biol Cell 6:7–20PubMedGoogle Scholar
  54. Hutchinson, L., Browne, H., Wargent, V., Davis-Poynter, N., Primorac, S., Goldsmith, K., Minson, A. C., and Johnson, D. C. (1992) A novel herpes simplex virus glycoprotein, gL, forms a complex with glycoprotein H (gH) and affects normal folding and surface expression of gH. J Virol 66:2240–2250PubMedGoogle Scholar
  55. Igakura, T., Stinchcombe, J. C., Goon, P. K., Taylor, G. P., Weber, J. N., Griffiths, G. M., Tanaka, Y., Osame, M., and Bangham, C. R. (2003) Spread of HTLV-I between lymphocytes by virus-induced polarization of the cytoskeleton. Science 299:1713–1716CrossRefPubMedGoogle Scholar
  56. Isaacs, S. N., Wolffe, E. J., Payne, L. G., and Moss, B. (1992) Characterization of a vaccinia virus-encoded 42-kilodalton class I membrane glycoprotein component of the extracellular virus envelope. J Virol 66:7217–7224PubMedGoogle Scholar
  57. Jackson, A. P., Flett, A., Smythe, C., Hufton, L., Wettey, F. R., and Smythe, E. (2003) Clathrin promotes incorporation of cargo into coated pits by activation of the AP2 adaptor micro2 kinase. J Cell Biol 163:231–236CrossRefPubMedGoogle Scholar
  58. Jadot, M., Canfield, W. M., Gregory, W., and Kornfeld, S. (1992) Characterization of the signal for rapid internalization of the bovine mannose 6-phosphate/insulinlike growth factor-II receptor. J Biol Chem 267:11069–11077PubMedGoogle Scholar
  59. Janvier, K., Kato, Y., Boehm, M., Rose, J. R., Martina, J. A., Kim, B. Y., Venkatesan, S., and Bonifacino, J. S. (2003) Recognition of dileucine-based sorting signals from HIV-1 Nef and LIMP-II by the AP-1 g-s1 and AP-3 d-s3 hemicomplexes. J Cell Biol 163:1281–1290CrossRefPubMedGoogle Scholar
  60. Jarvis, M. A., Fish, K. N., Soderberg-Naucler, C., Streblow, D. N., Meyers, H. L., Thomas, G., and Nelson, J. A. (2002) Retrieval of human cytomegalovirus glycoprotein B from cell surface is not required for virus envelopment in astrocytoma cells. J Virol 76:5147–5155CrossRefPubMedGoogle Scholar
  61. Jassal, S. R., Lairmore, M. D., Leigh-Brown, A. J., and Brighty, D. W. (2001) Soluble recombinant HTLV-1 surface glycoprotein competitively inhibits syncytia formation and viral infection of cells. Virus Res 78:17–34CrossRefPubMedGoogle Scholar
  62. Johnson, D. C., and Feenstra, V. (1987) Identification of a novel herpes simplex virus type 1-induced glycoprotein which complexes with gE and binds immunoglobulin. J Virol 61:2208–2216PubMedGoogle Scholar
  63. Johnson, D. C., Webb, M., Wisner, T. W., and Brunetti, C. (2001) Herpes simplex virus gE/gI sorts nascent virions to epithelial cell junctions, promoting virus spread. J Virol 75:821–833CrossRefPubMedGoogle Scholar
  64. Johnson, K. F., and Kornfeld, S. (1992) The cytoplasmic tail of the mannose 6-phosphate/insulin-like growth factor-II receptor has two signals for lysosomal enzyme sorting in the Golgi. J Cell Biol 119:249–257CrossRefPubMedGoogle Scholar
  65. Jones, B. G., Thomas, L., Molloy, S. S., Thulin, C. D., Fry, M. D., Walsh, K. A., and Thomas, G. (1995) Intracellular trafficking of furin is modulated by the phosphorylation state of a casein kinase II site in its cytoplasmic tail. EMBO J 14:5869–5883PubMedGoogle Scholar
  66. Katz, E., Wolffe, E. J., and Moss, B. (1997) The cytoplasmic and transmembrane domains of the vaccinia virus B5R protein target a chimeric human immunodeficiency virus type 1 glycoprotein to the outer envelope of nascent vaccinia virions. J Virol 71:3178–3187PubMedGoogle Scholar
  67. Katzmann, D. J., Odorizzi, G., and Emr, S. D. (2002) Receptor downregulation and multivesicular-body sorting. Nat Rev Mol Cell Biol 3:893–905CrossRefPubMedGoogle Scholar
  68. Kim, F. J., Manel, N., Boublik, Y., Battini, J. L., and Sitbon, M. (2003) Human T-cell leukemia virus type 1 envelope-mediated syncytium formation can be activated in resistant mammalian cell lines by a carboxy-terminal truncation of the envelope cytoplasmic domain. J Virol 77:963–969CrossRefPubMedGoogle Scholar
  69. Kledal, T. N., Rosenkilde, M. M., and Schwartz, T. W. (1998) Selective recognition of the membrane-bound CX3C chemokine, fractalkine, by the human cytomegalovirus-encoded broad-spectrum receptor US28. FEBS Lett 441:209–214CrossRefPubMedGoogle Scholar
  70. Kornfeld, S., and Mellman, I. (1989) The biogenesis of lysosomes. Annu Rev Cell Biol 5:483–525CrossRefPubMedGoogle Scholar
  71. LaBranche, C. C., Sauter, M. M., Haggarty, B. S., Vance, P. J., Romano, J., Hart, T. K., Bugelski, P. J., Marsh, M., and Hoxie, J. A. (1995) A single amino acid change in the cytoplasmic domain of the simian immunodeficiency virus transmembrane molecule increases envelope glycoprotein expression on infected cells. J Virol 69:5217–5227PubMedGoogle Scholar
  72. Letourneur, F., Gaynor, E. C., Hennecke, S., Demolliere, C., Duden, R., Emr, S. D., Riezman, H., and Cosson, P. (1994) Coatomer is essential for retrieval of dilysine-tagged proteins to the endoplasmic reticulum. Cell 79:1199–1207CrossRefPubMedGoogle Scholar
  73. Li, F., Goila-Gaur, R., Salzwedel, K., Kilgore, N. R., Reddick, M., Matallana, C., Castillo, A., Zoumplis, D., Martin, D. E., Orenstein, J. M., Allaway, G. P., Freed, E. O., and Wild, C. T. (2003) PA-457: a potent HIV inhibitor that disrupts core condensation by targeting a late step in Gag processing. Proc Natl Acad Sci USA 100:13555–13560CrossRefPubMedGoogle Scholar
  74. Lin, S., Naim, H. Y., Rodriguez, A. C., and Roth, M. G. (1998) Mutations in the middle of the transmembrane domain reverse the polarity of transport of the influenza virus hemagglutinin in MDCK epithelial cells. J Cell Biol 142:51–57CrossRefPubMedGoogle Scholar
  75. Lindwasser, O. W., and Resh, M. D. (2001) Multimerization of human immunodeficiency virus type 1 Gag promotes its localization to barges, raft-like membrane microdomains. J Virol 75:7913–7924CrossRefPubMedGoogle Scholar
  76. Lodge, R., Delamarre, L., Lalonde, J. P., Alvarado, J., Sanders, D. A., Dokhelar, M. C., Cohen, E. A., and Lemay, G. (1997a) Two distinct oncornaviruses harbor an intracytoplasmic tyrosine-based basolateral targeting signal in their viral envelope glycoprotein. J Virol 71:5696–5702PubMedGoogle Scholar
  77. Lodge, R., Gottlinger, H., Gabuzda, D., Cohen, E. A., and Lemay, G. (1994) The intracytoplasmic domain of gp41 mediates polarized budding of human immunodeficiency virus type 1 in MDCK cells. J Virol 68:4857–4861PubMedGoogle Scholar
  78. Lodge, R., Lalonde, J. P., Lemay, G., and Cohen, E. A. (1997b) The membrane-proximal intracytoplasmic tyrosine residue of HIV-1 envelope glycoprotein is critical for basolateral targeting of viral budding in MDCK cells. EMBO J 16:695–705CrossRefPubMedGoogle Scholar
  79. Marks, M. S., Woodruff, L., Ohno, H., and Bonifacino, J. S. (1996) Protein targeting by tyrosine-and di-leucine-based signals: evidence for distinct saturable components. J Cell Biol 135:341–354CrossRefPubMedGoogle Scholar
  80. Marsh, M., and Thali, M. (2003) HIV's great escape. Nat Med 9:1262–1263CrossRefPubMedGoogle Scholar
  81. Matlin, K., Bainton, D. F., Pesonen, M., Louvard, D., Genty, N., and Simons, K. (1983) Transepithelial transport of a viral membrane glycoprotein implanted into the apical plasma membrane of Madin-Darby canine kidney cells. I. Morphological evidence. J Cell Biol 97:627–637CrossRefPubMedGoogle Scholar
  82. Matsuoka, Y., Chen, S. Y., and Compans, R. W. (1991) Bunyavirus protein transport and assembly. Curr Top Microbiol Immunol 169:161–179PubMedGoogle Scholar
  83. McMillan, T. N., and Johnson, D. C. (2001) Cytoplasmic domain of herpes simplex virus gE causes accumulation in the trans-Golgi network, a site of virus envelopment and sorting of virions to cell junctions. J Virol 75:1928–1940CrossRefPubMedGoogle Scholar
  84. Melin, L., Persson, R., Andersson, A., Bergstrom, A., Ronnholm, R., and Pettersson, R. F. (1995) The membrane glycoprotein G1 of Uukuniemi virus contains a signal for localization to the Golgi complex. Virus Res 36:49–66CrossRefPubMedGoogle Scholar
  85. Mokros, T., Rehm, A., Droese, J., Oppermann, M., Lipp, M., and Hopken, U. E. (2002) Surface expression and endocytosis of the human cytomegalovirus-encoded chemokine receptor US28 is regulated by agonist-independent phosphorylation. J Biol Chem 277:45122–45128CrossRefPubMedGoogle Scholar
  86. Molloy, S. S., Thomas, L., VanSlyke, J. K., Stenberg, P. E., and Thomas, G. (1994) Intracellular trafficking and activation of the furin proprotein convertase: localization to the TGN and recycling from the cell surface. EMBO J 13:18–33PubMedGoogle Scholar
  87. Montalvo, E. A., and Grose, C. (1986) Neutralization epitope of varicella zoster virus on native viral glycoprotein gp118 (VZV glycoprotein gpIII) Virology 149:230–241PubMedGoogle Scholar
  88. Nagy, K., Clapham, P., Cheingsong-Popov, R., and Weiss, R. A. (1983) Human T-cell leukemia virus type I: induction of syncytia and inhibition by patients’ sera. Int J Cancer 32:321–328PubMedGoogle Scholar
  89. Newcomb, W. W., Thomsen, D. R., Homa, F. L., and Brown, J. C. (2003) Assembly of the herpes simplex virus capsid: identification of soluble scaffold-portal complexes and their role in formation of portal-containing capsids. J Virol 77:9862–9871CrossRefPubMedGoogle Scholar
  90. Nishimura, N., and Balch, W. E. (1997) A di-acidic signal required for selective export from the endoplasmic reticulum. Science 277:556–558CrossRefPubMedGoogle Scholar
  91. Nishimura, N., Bannykh, S., Slabough, S., Matteson, J., Altschuler, Y., Hahn, K., and Balch, W. E. (1999) A di-acidic (DXE) code directs concentration of cargo during export from the endoplasmic reticulum. J Biol Chem 274:15937–15946CrossRefPubMedGoogle Scholar
  92. Nixdorf, R., Klupp, B. G., Karger, A., and Mettenleiter, T. C. (2000) Effects of truncation of the carboxy terminus of pseudorabies virus glycoprotein B on infectivity. J Virol 74:7137–7145CrossRefPubMedGoogle Scholar
  93. Ochsenbauer, C., Dubay, S. R., and Hunter, E. (2000) The Rous sarcoma virus Env glycoprotein contains a highly conserved motif homologous to tyrosine-based endocytosis signals and displays an unusual internalization phenotype. Mol Cell Biol 20:249–260PubMedGoogle Scholar
  94. Ohno, H., Aguilar, R. C., Fournier, M. C., Hennecke, S., Cosson, P., and Bonifacino, J. S. (1997) Interaction of endocytic signals from the HIV-1 envelope glycoprotein complex with members of the adaptor medium chain family. Virology 238:305–315CrossRefPubMedGoogle Scholar
  95. Olson, J. K., and Grose, C. (1997) Endocytosis and recycling of varicella-zoster virus Fc receptor glycoprotein gE: internalization mediated by a YXXL motif in the cytoplasmic tail. J Virol 71:4042–4054PubMedGoogle Scholar
  96. Ono, A., and Freed, E. O. (2001) Plasma membrane rafts play a critical role in HIV-1 assembly and release. Proc Natl Acad Sci U S A 98:13925–13930CrossRefPubMedGoogle Scholar
  97. Ono, A. and Freed, E. O. (2003) Evidence for a role for PI(4,5)P2 in the targeting of HIG-1 GAG to the plasma membrane. Paper presented at: Retroviruses (Cold Spring Harbor Laboratory, Cold Spring Harbor, NY), p101Google Scholar
  98. Owens, R. J., Dubay, J. W., Hunter, E., and Compans, R. W. (1991) Human immunodeficiency virus envelope protein determines the site of virus release in polarized epithelial cells. Proc Natl Acad Sci U S A 88:3987–3991PubMedGoogle Scholar
  99. Pasieka, T. J., Maresova, L., and Grose, C. (2003) A functional YNKI motif in the short cytoplasmic tail of varicella-zoster virus glycoprotein gH mediates clathrin-dependent and antibody-independent endocytosis. J Virol 77:4191–4204CrossRefPubMedGoogle Scholar
  100. Pelchen-Matthews, A., Kramer, B., and Marsh, M. (2003) Infectious HIV-1 assembles in late endosomes in primary macrophages. J Cell Biol 162:443–455CrossRefPubMedGoogle Scholar
  101. Pelkmans, L., and Helenius, A. (2002) Endocytosis via caveolae. Traffic 3:311–320CrossRefPubMedGoogle Scholar
  102. Pique, C., Pham, D., Tursz, T., and Dokhelar, M. C. (1993) The cytoplasmic domain of the human T-cell leukemia virus type I envelope can modulate envelope functions in a cell type-dependent manner. J Virol 67:557–561PubMedGoogle Scholar
  103. Pitcher, C., Honing, S., Fingerhut, A., Bowers, K., and Marsh, M. (1999) Cluster of differentiation antigen 4 (CD4) endocytosis and adaptor complex binding require activation of the CD4 endocytosis signal by serine phosphorylation. Mol Biol Cell 10:677–691PubMedGoogle Scholar
  104. Pornillos, O., Garrus, J. E., and Sundquist, W. I. (2002) Mechanisms of enveloped RNA virus budding. Trends Cell Biol 12:569–579CrossRefPubMedGoogle Scholar
  105. Pornillos, O., Higginson, D. S., Stray, K. M., Fisher, R. D., Garrus, J. E., Payne, M., He, G. P., Wang, H. E., Morham, S. G., and Sundquist, W. I. (2003) HIV Gag mimics the Tsg101-recruiting activity of the human Hrs protein. J Cell Biol 162:425–434CrossRefPubMedGoogle Scholar
  106. Radsak, K., Eickmann, M., Mockenhaupt, T., Bogner, E., Kern, H., Eis-Hubinger, A., and Reschke, M. (1996) Retrieval of human cytomegalovirus glycoprotein B from the infected cell surface for virus envelopment. Arch Virol 141:557–572CrossRefPubMedGoogle Scholar
  107. Raposo, G., Moore, M., Innes, D., Leijendekker, R., Leigh-Brown, A., Benaroch, P., and Geuze, H. (2002) Human macrophages accumulate HIV-1 particles in MHC II compartments. Traffic 3:718–729CrossRefPubMedGoogle Scholar
  108. Ricotta, D., Conner, S. D., Schmid, S. L., von Figura, K., and Honing, S. (2002) Phosphorylation of the AP2 mu subunit by AAK1 mediates high affinity binding to membrane protein sorting signals. J Cell Biol 156:791–795CrossRefPubMedGoogle Scholar
  109. Robinson, M. S. (1987) Coated vesicles and protein sorting. J Cell Sci 87: 203–204PubMedGoogle Scholar
  110. Rodriguez, J. E., Moninger, T., and Grose, C. (1993) Entry and egress of varicella virus blocked by same anti-gH monoclonal antibody. Virology 196:840–844CrossRefPubMedGoogle Scholar
  111. Ronnholm, R. (1992) Localization to the Golgi complex of Uukuniemi virus glycoproteins G1 and G2 expressed from cloned cDNAs. J Virol 66:4525–4531PubMedGoogle Scholar
  112. Rowell, J. F., Stanhope, P. E., and Siliciano, R. F. (1995) Endocytosis of endogenously synthesized HIV-1 envelope protein. Mechanism and role in processing for association with class II MHC. J Immunol 155:473–488PubMedGoogle Scholar
  113. Sauter, M. M., Pelchen-Matthews, A., Bron, R., Marsh, M., LaBranche, C. C., Vance, P. J., Romano, J., Haggarty, B. S., Hart, T. K., Lee, W. M., and Hoxie, J. A. (1996) An internalization signal in the simian immunodeficiency virus transmembrane protein cytoplasmic domain modulates expression of envelope glycoproteins on the cell surface. J Cell Biol 132:795–811CrossRefPubMedGoogle Scholar
  114. Schafer, W., Stroh, A., Berghofer, S., Seiler, J., Vey, M., Kruse, M. L., Kern, H. F., Klenk, H. D., and Garten, W. (1995) Two independent targeting signals in the cytoplasmic domain determine trans-Golgi network localization and endosomal trafficking of the proprotein convertase furin. EMBO J 14:2424–2435PubMedGoogle Scholar
  115. Scheiffele, P., Peranen, J., and Simons, K. (1995) N-glycans as apical sorting signals in epithelial cells. Nature 378:96–98CrossRefPubMedGoogle Scholar
  116. Scheiffele, P., Roth, M. G., and Simons, K. (1997) Interaction of influenza virus haemagglutinin with sphingolipid-cholesterol membrane domains via its transmembrane domain. EMBO J 16:5501–5508CrossRefPubMedGoogle Scholar
  117. Schmelz, M., Sodeik, B., Ericsson, M., Wolffe, E. J., Shida, H., Hiller, G., and Griffiths, G. (1994) Assembly of vaccinia virus: the second wrapping cisterna is derived from the trans Golgi network. J Virol 68:130–147PubMedGoogle Scholar
  118. Schmid, S. L. (1997) Clathrin-coated vesicle formation and protein sorting: an integrated process. Annu Rev Biochem 66:511–548CrossRefPubMedGoogle Scholar
  119. Seaman, M. N., and Williams, H. P. (2002) Identification of the functional domains of yeast sorting nexins Vps5p and Vps17p. Mol Biol Cell 13:2826–2840CrossRefPubMedGoogle Scholar
  120. Sfakianos, J. N., and Hunter, E. (2003) M-PMV capsid transport is mediated by Env/Gag interactions at the pericentriolar recycling endosome. Traffic 4:671–680CrossRefPubMedGoogle Scholar
  121. Sfakianos, J. N., LaCasse, R. A., and Hunter, E. (2003) The M-PMV cytoplasmic targeting-retention signal directs nascent Gag polypeptides to a pericentriolar region of the cell. Traffic 4:660–670CrossRefPubMedGoogle Scholar
  122. Smith, G. L., Vanderplasschen, A., and Law, M. (2002) The formation and function of extracellular enveloped vaccinia virus. J Gen Virol 83:2915–2931PubMedGoogle Scholar
  123. Sorkin, A. (2000) The endocytosis machinery. J Cell Sci 113:4375–4376PubMedGoogle Scholar
  124. Spaete, R. R., Gehrz, R. C., and Landini, M. P. (1994) Human cytomegalovirus structural proteins. J Gen Virol 75: 3287–3308PubMedGoogle Scholar
  125. Spear, P. G., and Longnecker, R. (2003) Herpesvirus entry: an update. J Virol 77:10179–10185CrossRefPubMedGoogle Scholar
  126. Stoorvogel, W., Kleijmeer, M. J., Geuze, H. J., and Raposo, G. (2002) The biogenesis and functions of exosomes. Traffic 3:321–330CrossRefPubMedGoogle Scholar
  127. Sugimoto, H., Sugahara, M., Folsch, H., Koide, Y., Nakatsu, F., Tanaka, N., Nishimura, T., Furukawa, M., Mullins, C., Nakamura, N., Mellman, I., and Ohno, H. (2002) Differential recognition of tyrosine-based basolateral signals by AP-1B subunit mu1B in polarized epithelial cells. Mol Biol Cell 13:2374–2382CrossRefPubMedGoogle Scholar
  128. Suomalainen, M. (2002) Lipid rafts and assembly of enveloped viruses. Traffic 3:705–709CrossRefPubMedGoogle Scholar
  129. Takahashi, S., Nakagawa, T., Banno, T., Watanabe, T., Murakami, K., and Nakayama, K. (1995) Localization of furin to the trans-Golgi network and recycling from the cell surface involves Ser and Tyr residues within the cytoplasmic domain. J Biol Chem 270:28397–28401CrossRefPubMedGoogle Scholar
  130. ter Haar, E., Musacchio, A., Harrison, S. C., and Kirchhausen, T. (1998) Atomic structure of clathrin: a beta propeller terminal domain joins an alpha zigzag linker. Cell 95:563–573CrossRefPubMedGoogle Scholar
  131. Thomas, D. C., Brewer, C. B., and Roth, M. G. (1993) Vesicular stomatitis virus glycoprotein contains a dominant cytoplasmic basolateral sorting signal critically dependent upon a tyrosine. J Biol Chem 268:3313–3320PubMedGoogle Scholar
  132. Thomas, D. C., and Roth, M. G. (1994) The basolateral targeting signal in the cytoplasmic domain of glycoprotein G from vesicular stomatitis virus resembles a variety of intracellular targeting motifs related by primary sequence but having diverse targeting activities. J Biol Chem 269:15732–15739PubMedGoogle Scholar
  133. Tikkanen, R., Obermuller, S., Denzer, K., Pungitore, R., Geuze, H. J., von Figura, K., and Honing, S. (2000) The dileucine motif within the tail of MPR46 is required for sorting of the receptor in endosomes. Traffic 1:631–640CrossRefPubMedGoogle Scholar
  134. Tirabassi, R. S., and Enquist, L. W. (1998) Role of envelope protein gE endocytosis in the pseudorabies virus life cycle. J Virol 72:4571–4579PubMedGoogle Scholar
  135. Trowbridge, I. S., Collawn, J. F., and Hopkins, C. R. (1993) Signal-dependent membrane protein trafficking in the endocytic pathway. Annu Rev Cell Biol 9:129–161CrossRefPubMedGoogle Scholar
  136. Tugizov, S., Maidji, E., Xiao, J., and Pereira, L. (1999) An acidic cluster in the cytosolic domain of human cytomegalovirus glycoprotein B is a signal for endocytosis from the plasma membrane. J Virol 73:8677–8688PubMedGoogle Scholar
  137. Tugizov, S., Maidji, E., Xiao, J., Zheng, Z., and Pereira, L. (1998) Human cytomegalovirus glycoprotein B contains autonomous determinants for vectorial targeting to apical membranes of polarized epithelial cells. J Virol 72:7374–7386PubMedGoogle Scholar
  138. Tugizov, S., Navarro, D., Paz, P., Wang, Y., Qadri, I., and Pereira, L. (1994) Function of human cytomegalovirus glycoprotein B: syncytium formation in cells constitutively expressing gB is blocked by virus-neutralizing antibodies. Virology 201:263–276CrossRefPubMedGoogle Scholar
  139. Tugizov, S., Wang, Y., Qadri, I., Navarro, D., Maidji, E., and Pereira, L. (1995) Mutated forms of human cytomegalovirus glycoprotein B are impaired in inducing syncytium formation. Virology 209:580–591CrossRefPubMedGoogle Scholar
  140. Ukkonen, P., Lewis, V., Marsh, M., Helenius, A., and Mellman, I. (1986) Transport of macrophage Fc receptors and Fc receptor-bound ligands to lysosomes. J Exp Med 163:952–971CrossRefPubMedGoogle Scholar
  141. Vincent, M. J., Melsen, L. R., Martin, A. S., and Compans, R. W. (1999) Intracellular interaction of simian immunodeficiency virus Gag and Env proteins. J Virol 73:8138–8144PubMedGoogle Scholar
  142. von Schwedler, U. K., Stuchell, M., Muller, B., Ward, D. M., Chung, H. Y., Morita, E., Wang, H. E., Davis, T., He, G. P., Cimbora, D. M., Scott, A., Krausslich, H. G., Kaplan, J., Morham, S. G., and Sundquist, W. I. (2003) The protein network of HIV budding. Cell 114:701–713CrossRefPubMedGoogle Scholar
  143. Voorhees, P., Deignan, E., van Donselaar, E., Humphrey, J., Marks, M. S., Peters, P. J., and Bonifacino, J. S. (1995) An acidic sequence within the cytoplasmic domain of furin functions as a determinant of trans-Golgi network localization and internalization from the cell surface. EMBO J 14:4961–4975PubMedGoogle Scholar
  144. Wang, Z., Gershon, M. D., Lungu, O., Panagiotidis, C. A., Zhu, Z., Hao, Y., and Gershon, A. A. (1998) Intracellular transport of varicella-zoster glycoproteins. J Infect Dis 178Suppl 1: S7–S12CrossRefPubMedGoogle Scholar
  145. Ward, B. M., and Moss, B. (2000) Golgi network targeting and plasma membrane internalization signals in vaccinia virus B5R envelope protein. J Virol 74:3771–3780CrossRefPubMedGoogle Scholar
  146. Willey, R. L., Bonifacino, J. S., Potts, B. J., Martin, M. A., and Klausner, R. D. (1988) Biosynthesis, cleavage, and degradation of the human immunodeficiency virus 1 envelope glycoprotein gp160. Proc Natl Acad Sci U S A 85:9580–9584PubMedGoogle Scholar
  147. Wisner, T., Brunetti, C., Dingwell, K., and Johnson, D. C. (2000) The extracellular domain of herpes simplex virus gE is sufficient for accumulation at cell junctions but not for cell-to-cell spread. J Virol 74:2278–2287CrossRefPubMedGoogle Scholar
  148. Wolffe, E. J., Isaacs, S. N., and Moss, B. (1993) Deletion of the vaccinia virus B5R gene encoding a 42-kilodalton membrane glycoprotein inhibits extracellular virus envelope formation and dissemination. J Virol 67:4732–4741PubMedGoogle Scholar
  149. Wyss, S., Berlioz-Torrent, C., Boge, M., Blot, G., Honing, S., Benarous, R., and Thali, M. (2001) The highly conserved C-terminal dileucine motif in the cytosolic domain of the human immunodeficiency virus type 1 envelope glycoprotein is critical for its association with the AP-1 clathrin adaptor. J Virol 75:2982–2992CrossRefPubMedGoogle Scholar
  150. Yao, Z., Jackson, W., Forghani, B., and Grose, C. (1993) Varicella-zoster virus glycoprotein gpI/gpIV receptor: expression, complex formation, and antigenicity within the vaccinia virus-T7 RNA polymerase transfection system. J Virol 67:305–314PubMedGoogle Scholar
  151. Yasuda, J., Hunter, E., Nakao, M., and Shida, H. (2002) Functional involvement of a novel Nedd4-like ubiquitin ligase on retrovirus budding. EMBO Rep 3:636–640CrossRefPubMedGoogle Scholar
  152. Yeaman, C., Le Gall, A. H., Baldwin, A. N., Monlauzeur, L., Le Bivic, A., and Rodriguez-Boulan, E. (1997) The O-glycosylated stalk domain is required for apical sorting of neurotrophin receptors in polarized MDCK cells. J Cell Biol 139:929–940CrossRefPubMedGoogle Scholar
  153. Yuste, E. and Desrosiers, R. C. (2003) Mutations in the cytoplasmic domain of SIV gp41 can dramatically increase envelope content in virions, infectivity and neutralization. Paper presented at: Retroviruses (Cold Spring Harbor Laboratory, Cold Spring Harbor, NY), p276Google Scholar
  154. Zhu, Z., Gershon, M. D., Hao, Y., Ambron, R. T., Gabel, C. A., and Gershon, A. A. (1995) Envelopment of varicella-zoster virus: targeting of viral glycoproteins to the trans-Golgi network. J Virol 69:7951–7959PubMedGoogle Scholar
  155. Zhu, Z., Hao, Y., Gershon, M. D., Ambron, R. T., and Gershon, A. A. (1996) Targeting of glycoprotein I (gE) of varicella-zoster virus to the trans-Golgi network by an AYRV sequence and an acidic amino acid-rich patch in the cytosolic domain of the molecule. J Virol 70:6563–6575PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • R. Byland
    • 1
  • M. Marsh
    • 1
  1. 1.Cell Biology Unit, MRC-LMCB and Department of Biochemistry and Molecular BiologyUniversity College LondonLondonUK

Personalised recommendations