Receptor Modulation in Viral replication: HIV, HSV, HHV-8 and HPV: Same Goal, Different Techniques to Interfere with MHC-I Antigen Presentation

  • V. Piguet
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 285)


Evasion of host immunity is a common objective of viruses that cause chronic infections. Viruses involved in sexually transmitted infections constitute no exception to this phenomenon. HIV, HPV, HSV, and HHV-8 subvert the class I major histocompatibility complex (MHC-I) antigen presentation pathway, thereby evading the cellular immune response. Although the goal of these viruses is the same and efficient MHC-I downregulation in infected cells is achieved, their techniques vary considerably. Whether viral inhibition occurs at the transcriptional level, during assembly of MHC-I complexes in the endoplasmic reticulum, during its journey to the cell surface, or after reaching the cell surface, each one of these viruses ingeniously achieves MHC-I downregulation and avoids the cellular immune response. Unraveling the mechanisms of interference with MHC-I antigen presentation employed by these viruses is not only crucial to understand their pathogenesis, but also reveals novel mechanisms of regulation of cellular receptors. When employed as modulators of cellular trafficking pathways, viruses become tools to dissect fundamental cell processes. In return, the precise dissection of these processes may offer new weapons against the ruses viruses employ to propagate and establish chronic infections.


Major Histocompatibility Complex Major Histocompatibility Complex Class Dileucine Motif Adaptor Protein Complex Herpes Simplex Virus Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahn, K., Gruhler, A., Galocha, B., Jones, T., Wiertz, E., Ploegh, H., Peterson, P., Yang, Y., and Fruh, K. (1997) The ER-luminal domain of the HCMV glycoprotein US6 inhibits peptide translocation by TAP. Immunity 6:613–621CrossRefPubMedGoogle Scholar
  2. Ahn, K., Meyer, T. H., Uebel, S., Sempe, P., Djaballah, H., Yang, Y., Peterson, P. A., Fruh, K., and Tampe, R. (1996) Molecular mechanism and species specificity of TAP inhibition by herpes simplex virus ICP47. EMBO J 15:3247–55PubMedGoogle Scholar
  3. Aiken, C., Konner, J., Landau, N. R., Lenburg, M. E., and Trono, D. (1994) Nef induces CD4 endocytosis: requirement for a critical dileucine motif in the membrane-proximal CD4 cytoplasmic domain. Cell 76:853–64CrossRefPubMedGoogle Scholar
  4. Ashrafi, G. H., Tsirimonaki, E., Marchetti, B., O'Brien, P. M., Sibbet, G. J., Andrew, L., and Campo, M. S. (2002) Down-regulation of MHC class I by bovine papillomavirus E5 oncoproteins. Oncogene 21:248–59CrossRefPubMedGoogle Scholar
  5. Babst, M., Odorizzi, G., Estepa, E. J., and Emr, S. D. (2000) Mammalian tumor susceptibility gene 101 (TSG101) and the yeast homologue, Vps23p, both function in late endosomal trafficking. Traffic 1:248–58CrossRefPubMedGoogle Scholar
  6. Bijlmakers, M. J., and Ploegh, H. L. (1993) Putting together an MHC class I molecule. Curr Opin Immunol 5:21–6CrossRefPubMedGoogle Scholar
  7. Blagoveshchenskaya, A. D., Thomas, L., Feliciangeli, S. F., Hung, C. H., and Thomas, G. (2002) HIV-1 Nef downregulates MHC-I by a PACS-1-and PI3K-regulated ARF6 endocytic pathway. Cell 111:853–66CrossRefPubMedGoogle Scholar
  8. Bresnahan, P. A., Yonemoto, W., Ferrell, S., Williams-Herman, D., Geleziunas, R., and Greene, W. C. (1998) A dileucine motif in HIV-1 Nef acts as an internalization signal for CD4 downregulation and binds the AP-1 clathrin adaptor. Curr Biol 8:1235–1238CrossRefPubMedGoogle Scholar
  9. Cohen, E. A., Terwilliger, E. F., Sodroski, J. G., and Haseltine, W. A. (1988) Identification of a protein encoded by the vpu gene of HIV-1. Nature 334:532–534CrossRefPubMedGoogle Scholar
  10. Cohen, G. B., Gandhi, R. T., Davis, D. M., Mandelboim, O., Chen, B. K., Strominger, J. L., and Baltimore, D. (1999) The selective downregulation of class I major histocompatibility complex proteins by HIV-1 protects HIV-infected cells from NK cells. Immunity 10:661–71CrossRefPubMedGoogle Scholar
  11. Collins, K. L., Chen, B. K., Kalams, S. A., Walker, B. D., and Baltimore, D. (1998) HIV-1 Nef protein protects infected primary cells against killing by cytotoxic T lymphocytes. Nature 391:397–401CrossRefPubMedGoogle Scholar
  12. Conner, S. D., and Schmid, S. L. (2003) Regulated portals of entry into the cell. Nature 422:37–44CrossRefPubMedGoogle Scholar
  13. Coscoy, L., and Ganem, D. (2000) Kaposi's sarcoma-associated herpesvirus encodes two proteins that block cell surface display of MHC class I chains by enhancing their endocytosis. Proc Natl Acad Sci U S A 97:8051–6CrossRefPubMedGoogle Scholar
  14. Coscoy, L., Sanchez, D. J., and Ganem, D. (2001) A novel class of herpesvirus-encoded membrane-bound E3 ubiquitin ligases regulates endocytosis of proteins involved in immune recognition. J Cell Biol 155:1265–73CrossRefPubMedGoogle Scholar
  15. Craig, H. M., Pandori, M. W., and Guatelli, J. C. (1998) Interaction of HIV-1 nef with the cellular dileucine-based sorting pathway is required for CD4 down-regulation and optimal viral infectivity. Proc Natl Acad Sci U S A 95:11229–34CrossRefPubMedGoogle Scholar
  16. Crump, C. M., Xiang, Y., Thomas, L., Gu, F., Austin, C., Tooze, S. A., and Thomas, G. (2001) PACS-1 binding to adaptors is required for acidic cluster motif-mediated protein traffic. EMBO J 20:2191–201CrossRefPubMedGoogle Scholar
  17. Engering, A., Geijtenbeek, T. B., van Vliet, S. J., Wijers, M., van Liempt, E., Demaurex, N., Lanzavecchia, A., Fransen, J., Figdor, C. G., Piguet, V., and van Kooyk, Y. (2002) The dendritic cell-specific adhesion receptor DC-SIGN internalizes antigen for presentation to T cells. J Immunol 168:2118–26PubMedGoogle Scholar
  18. Fruh, K., Ahn, K., Djaballah, H., Sempe, P., van Endert, P. M., Tampe, R., Peterson, P. A., and Yang, Y. (1995) A viral inhibitor of peptide transporters for antigen presentation. Nature 375:415–8CrossRefPubMedGoogle Scholar
  19. Fujita, K., Omura, S., and Silver, J. (1997) Rapid degradation of CD4 in cells expressing human immunodeficiency virus type 1 Env and Vpu is blocked by proteasome inhibitors. J Gen Virol 78:619–25PubMedGoogle Scholar
  20. Garcia, J., and Miller, A. (1991) Serine phosphorylation independent downregulation of cell surface CD4 by Nef. Nature 350:508–511CrossRefPubMedGoogle Scholar
  21. Geijtenbeek, T. B., Kwon, D. S., Torensma, R., van Vliet, S. J., van Duijnhoven, G. C., Middel, J., Cornelissen, I. L., Nottet, H. S., KewalRamani, V. N., Littman, D. R., et al. (2000a) DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell 100:587–97CrossRefPubMedGoogle Scholar
  22. Geijtenbeek, T. B., Torensma, R., van Vliet, S. J., van Duijnhoven, G. C., Adema, G. J., van Kooyk, Y., and Figdor, C. G. (2000b) Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses. Cell 100:575–85CrossRefPubMedGoogle Scholar
  23. Georgopoulos, N. T., Proffitt, J. L., and Blair, G. E. (2000) Transcriptional regulation of the major histocompatibility complex (MHC) class I heavy chain, TAP1 and LMP2 genes by the human papillomavirus (HPV) type 6b, 16 and 18 E7 oncoproteins. Oncogene 19:4930–5CrossRefPubMedGoogle Scholar
  24. Geyer, M., Fackler, O. T., and Peterlin, B. M. (2002a) Subunit H of the V-ATPase involved in endocytosis shows homology to beta-adaptins. Mol Biol Cell 13:2045–56CrossRefPubMedGoogle Scholar
  25. Geyer, M., Yu, H., Mandic, R., Linnemann, T., Zheng, Y. H., Fackler, O. T., and Peterlin, B. M. (2002b) Subunit H of the V-ATPase binds to the medium chain of adaptor protein complex 2 and connects Nef to the endocytic machinery. J Biol Chem 277:28521–9CrossRefPubMedGoogle Scholar
  26. Goldstein, D. J., Finbow, M. E., Andresson, T., McLean, P., Smith, K., Bubb, V., and Schlegel, R. (1991) Bovine papillomavirus E5 oncoprotein binds to the 16 K component of vacuolar H+-ATPases. Nature 352:347–9CrossRefPubMedGoogle Scholar
  27. Gorbulev, S., Abele, R., and Tampe, R. (2001) Allosteric crosstalk between peptide-binding, transport, and ATP hydrolysis of the ABC transporter TAP. Proc Natl Acad Sci U S A 98:3732–7CrossRefPubMedGoogle Scholar
  28. Goto, E., Ishido, S., Sato, Y., Ohgimoto, S., Ohgimoto, K., Nagano-Fujii, M., and Hotta, H. (2003) c-MIR, a human E3 ubiquitin ligase, is a functional homolog of herpesvirus proteins MIR1 and 2 and has similar activity. J Biol Chem 11:11Google Scholar
  29. Greenberg, M., Bronson, S., Lock, M., Neumann, M., Pavlakis, G., and Skowronski, J. (1997) Co-localization of HIV-1 Nef with the AP-2 adaptor protein complex correlates with Nef-induced CD4 down-regulation. EMBO J 16:6964–6976CrossRefPubMedGoogle Scholar
  30. Greenberg, M., DeTulleo, L., Rapoport, I., Skowronski, J., and Kirchhausen, T. (1998a) A dileucine motif in HIV-1 Nef is essential for sorting into clathrin-coated pits and for downregulation of CD4. Curr Biol 8:1239–1242CrossRefPubMedGoogle Scholar
  31. Greenberg, M. E., Iafrate, A. J., and Skowronski, J. (1998b) The SH3 domain-binding surface and an acidic motif in HIV-1 Nef regulate trafficking of class I MHC complexes. EMBO J 17:2777–2789CrossRefPubMedGoogle Scholar
  32. Hengel, H., Koopmann, J. O., Flohr, T., Muranyi, W., Goulmy, E., Hammerling, G. J., Koszinowski, U. H., and Momburg, F. (1997) A viral ER-resident glycoprotein inactivates the MHC-encoded peptide transporter. Immunity 6:623–32CrossRefPubMedGoogle Scholar
  33. Hengge, U. R., Ruzicka, T., Tyring, S. K., Stuschke, M., Roggendorf, M., Schwartz, R. A., and Seeber, S. (2002) Update on Kaposi's sarcoma and other HHV8 associated diseases. Part 1: epidemiology, environmental predispositions, clinical manifestations, and therapy. Lancet Infect Dis 2:281–92CrossRefPubMedGoogle Scholar
  34. Hewitt, E. W., Duncan, L., Mufti, D., Baker, J., Stevenson, P. G., and Lehner, P. J. (2002) Ubiquitylation of MHC class I by the K3 viral protein signals internalization and TSG101-dependent degradation. EMBO J 21:2418–29CrossRefPubMedGoogle Scholar
  35. Hicke, L. (2001) A new ticket for entry into budding vesicles—ubiquitin. Cell 106:527–30CrossRefPubMedGoogle Scholar
  36. Howcroft, T. K., Strebel, K., Martin, M. A., and Singer, D. S. (1993) Repression of MHC class I gene promoter activity by two-exon Tat of HIV. Science 260:1320–2PubMedGoogle Scholar
  37. Hughes, E. A., Hammond, C., and Cresswell, P. (1997) Misfolded major histocompatibility complex class I heavy chains are translocated into the cytoplasm and degraded by the proteasome. Proc Natl Acad Sci U S A 94:1896–901CrossRefPubMedGoogle Scholar
  38. Ishido, S., Choi, J. K., Lee, B. S., Wang, C., DeMaria, M., Johnson, R. P., Cohen, G. B., and Jung, J. U. (2000a) Inhibition of natural killer cell-mediated cytotoxicity by Kaposi's sarcoma-associated herpesvirus K5 protein. Immunity 13:365–74CrossRefPubMedGoogle Scholar
  39. Ishido, S., Wang, C., Lee, B. S., Cohen, G. B., and Jung, J. U. (2000b) Downregulation of major histocompatibility complex class I molecules by Kaposi's sarcoma-associated herpesvirus K3 and K5 proteins. J Virol 74:5300–9CrossRefPubMedGoogle Scholar
  40. Joazeiro, C. A., and Weissman, A. M. (2000) RING finger proteins: mediators of ubiquitin ligase activity. Cell 102:549–52CrossRefPubMedGoogle Scholar
  41. Kasper, M. R., and Collins, K. L. (2003) Nef-mediated disruption of HLA-A2 transport to the cell surface in T cells. J Virol 77:3041–9CrossRefPubMedGoogle Scholar
  42. Katzmann, D. J., Babst, M., and Emr, S. D. (2001) Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex, ESCRT-I. Cell 106:145–55CrossRefPubMedGoogle Scholar
  43. Kerkau, T., Bacik, I., Bennink, J., Yewdell, J., Hunig, T., Schimpl, A., and Schubert, U. (1997) The human immunodeficiency virus type 1 (HIV-1) Vpu protein interferes with an early step in the biosynthesis of major histocompatibility complex (MHC) class I molecules. J Exp Med 185:1295–1305CrossRefPubMedGoogle Scholar
  44. Lama, J., Mangasarian, A., and Trono, D. (1999) Cell-surface expression of CD4 reduces HIV-1 infectivity by blocking env incorporation in a nef-and vpu-inhibitable manner. Curr Biol 9:622–31CrossRefPubMedGoogle Scholar
  45. Le Gall, S., Buseyne, F., Trocha, A., Walker, B. D., Heard, J. M., and Schwartz, O. (2000) Distinct trafficking pathways mediate Nef-induced and clathrin-dependent major histocompatibility complex class I down-regulation. J Virol 74:9256–66CrossRefPubMedGoogle Scholar
  46. Le Gall, S., Erdtmann, L., Benichou, S., Berlioz-Torrent, C., Liu, L., Benarous, R., Heard, J.-M., and Schwarz, O. (1998) Nef interacts with the mu subunit of clathrin adaptor complexes and reveals a cryptic sorting signal in MHC-I molecules. Immunity 8:483–95CrossRefPubMedGoogle Scholar
  47. Lu, X., Yu, H., Liu, S., Brodsky, F. M., and Peterlin, B. M. (1998) Interactions between HIV1 Nef and vacuolar ATPase facilitate the internalization of CD4. Immunity 8:647–656CrossRefPubMedGoogle Scholar
  48. Mangasarian, A., Foti, M., Aiken, C., Chin, D., Carpentier, J. L., and Trono, D. (1997) The HIV-1 Nef protein acts as a connector with sorting pathways in the Golgi and at the plasma membrane. Immunity 6:67–77CrossRefPubMedGoogle Scholar
  49. Mangasarian, A., Piguet, V., Wang, J. K., Chen, Y., and Trono, D. (1999) Nef-induced CD4 and major histocompatibility complex class I (MHC-I) down-regulation are governed by distinct determinants: N-terminal alpha helix and proline repeat of Nef selectively regulate MHC-I trafficking. J Virol 73:1964–73PubMedGoogle Scholar
  50. Marchetti, B., Ashrafi, G. H., Tsirimonaki, E., O'Brien, P. M., and Campo, M. S. (2002) The bovine papillomavirus oncoprotein E5 retains MHC class I molecules in the Golgi apparatus and prevents their transport to the cell surface. Oncogene 21:7808–16CrossRefPubMedGoogle Scholar
  51. Margottin, F., Bour, S. P., Durand, H., Selig, L., Benichou, S., Richard, V., Thomas, D., Strebel, K., and Benarous, R. (1998) A novel human WD protein, h-beta TrCp, that interacts with HIV-1 Vpu connects CD4 to the ER degradation pathway through an F-box motif. Mol Cell 1:565–74CrossRefPubMedGoogle Scholar
  52. Means, R. E., Ishido, S., Alvarez, X., and Jung, J. U. (2002) Multiple endocytic trafficking pathways of MHC class I molecules induced by a herpesvirus protein. EMBO J 21:1638–49CrossRefPubMedGoogle Scholar
  53. Momburg, F., and Hengel, H. (2002) Corking the bottleneck: the transporter associated with antigen processing as a target for immune subversion by viruses. Curr Top Microbiol Immunol 269:57–74PubMedGoogle Scholar
  54. Munch, J., Stolte, N., Fuchs, D., Stahl-Hennig, C., and Kirchhoff, F. (2001) Efficient class I major histocompatibility complex down-regulation by simian immunodeficiency virus Nef is associated with a strong selective advantage in infected rhesus macaques. J Virol 75:10532–6CrossRefPubMedGoogle Scholar
  55. Neefjes, J. J., Stollorz, V., Peters, P. J., Geuze, H. J., and Ploegh, H. L. (1990) The biosynthetic pathway of MHC class II but not class I molecules intersects the endocytic route. Cell 61:171–83CrossRefPubMedGoogle Scholar
  56. Neumann, L., Kraas, W., Uebel, S., Jung, G., and Tampe, R. (1997) The active domain of the herpes simplex virus protein ICP47: a potent inhibitor of the transporter associated with antigen processing. J Mol Biol 272:484–92CrossRefPubMedGoogle Scholar
  57. Nicholas, J., Ruvolo, V., Zong, J., Ciufo, D., Guo, H. G., Reitz, M. S., and Hayward, G. S. (1997) A single 13-kilobase divergent locus in the Kaposi sarcoma-associated herpesvirus (human herpesvirus 8) genome contains nine open reading frames that are homologous to or related to cellular proteins. J Virol 71:1963–74PubMedGoogle Scholar
  58. Piguet, V., Chen, Y.-L., Mangasarian, A., Foti, M., Carpentier, J., and Trono, D. (1998) Mechanism of Nef induced CD4 endocytosis: Nef connects CD4 with the mu chain of adaptor complexes. EMBO J 17:2472–2481CrossRefPubMedGoogle Scholar
  59. Piguet, V., Gu, F., Foti, M., Demaurex, N., Gruenberg, J., Carpentier, J. L., and Trono, D. (1999) Nef-induced CD4 degradation: a diacidic-based motif in Nef functions as a lysosomal targeting signal through the binding of beta-COP in endosomes. Cell 97:63–73CrossRefPubMedGoogle Scholar
  60. Piguet, V., Wan, L., Borel, C., Mangasarian, A., Demaurex, N., Thomas, G., and Trono, D. (2000) HIV-1 Nef protein binds to the cellular protein PACS-1 to down-regulate class I major histocompatibility complexes. Nat Cell Biol 2:163–167CrossRefPubMedGoogle Scholar
  61. Reid, P. A., and Watts, C. (1990) Cycling of cell-surface MHC glycoproteins through primaquine-sensitive intracellular compartments. Nature 346:655–7CrossRefPubMedGoogle Scholar
  62. Rhee, S. S., and Marsh, J. W. (1994) Human immunodeficiency virus type 1 Nef-induced down-modulation of CD4 is due to rapid internalization and degradation of surface CD4. J Virol 68:5156–63PubMedGoogle Scholar
  63. Ross, T. M., Oran, A. E., and Cullen, B. R. (1999) Inhibition of HIV-1 progeny virion release by cell-surface CD4 is relieved by expression of the viral nef protein. Curr Biol 9:613–21CrossRefPubMedGoogle Scholar
  64. Russo, J. J., Bohenzky, R. A., Chien, M. C., Chen, J., Yan, M., Maddalena, D., Parry, J. P., Peruzzi, D., Edelman, I. S., Chang, Y., and Moore, P. S. (1996) Nucleotide sequence of the Kaposi sarcoma-associated herpesvirus (HHV8) Proc Natl Acad Sci U S A 93:14862–7CrossRefPubMedGoogle Scholar
  65. Schapiro, F., Sparkowski, J., Adduci, A., Suprynowicz, F., Schlegel, R., and Grinstein, S. (2000) Golgi alkalinization by the papillomavirus E5 oncoprotein. J Cell Biol 148:305–15CrossRefPubMedGoogle Scholar
  66. Schubert, U., Anton, L. C., Bacik, I., Cox, J. H., Bour, S., Bennink, J. R., Orlowski, M., Strebel, K., and Yewdell, J. W. (1998) CD4 glycoprotein degradation induced by human immunodeficiency virus type 1 Vpu protein requires the function of proteasomes and the ubiquitin-conjugating pathway. J Virol 72:2280–8PubMedGoogle Scholar
  67. Schubert, U., Anton, L. C., Gibbs, J., Norbury, C. C., Yewdell, J. W., and Bennink, J. R. (2000) Rapid degradation of a large fraction of newly synthesized proteins by proteasomes. Nature 404:770–4CrossRefPubMedGoogle Scholar
  68. Schwartz, O., Maréchal, V., Le Gall, S., Lemonnier, F., and Heard, J. M. (1996) Endocytosis of major histocompatibility complex class I molecules is induced by the HIV-1 Nef protein. Nat Med 2:338–42CrossRefPubMedGoogle Scholar
  69. Sol-Foulon, N., Moris, A., Nobile, C., Boccaccio, C., Engering, A., Abastado, J. P., Heard, J. M., van Kooyk, Y., and Schwartz, O. (2002) HIV-1 Nef-induced upregulation of DC-SIGN in dendritic cells promotes lymphocyte clustering and viral spread. Immunity 16:145–55CrossRefPubMedGoogle Scholar
  70. Straight, S. W., Herman, B., and McCance, D. J. (1995) The E5 oncoprotein of human papillomavirus type 16 inhibits the acidification of endosomes in human keratinocytes. J Virol 69:3185–92PubMedGoogle Scholar
  71. Strebel, K., Klimkait, T., and Martin, M. A. (1988) A novel gene of HIV-1:vpu, and its 16-kilodalton product. Science 241:1221–1223PubMedGoogle Scholar
  72. Tindle, R. W. (2002) Immune evasion in human papillomavirus-associated cervical cancer. Nat Rev Cancer 2:59–65CrossRefPubMedGoogle Scholar
  73. Tomazin, R., Hill, A. B., Jugovic, P., York, I., van Endert, P., Ploegh, H. L., Andrews, D. W., and Johnson, D. C. (1996) Stable binding of the herpes simplex virus ICP47 protein to the peptide binding site of TAP. EMBO J 15:3256–66PubMedGoogle Scholar
  74. Wan, L., Molloy, S. S., Thomas, L., Liu, G., Xiang, Y., Rybak, S. L., and Thomas, G. (1998) PACS-1 defines a novel gene family of cytosolic sorting proteins required for trans-Golgi network localization. Cell 94:205–16CrossRefPubMedGoogle Scholar
  75. Willey, R. L., Maldarelli, F., Martin, M. A., and Strebel, K. (1992) Human immunodeficiency virus type 1 Vpu protein induces rapid degradation of CD4. J Virol 66:7193–200PubMedGoogle Scholar
  76. Williams, M., Roeth, J. F., Kasper, M. R., Fleis, R. I., Przybycin, C. G., and Collins, K. L. (2002) Direct binding of human immunodeficiency virus type 1 Nef to the major histocompatibility complex class I (MHC-I) cytoplasmic tail disrupts MHC-I trafficking. J Virol 76:12173–84CrossRefPubMedGoogle Scholar
  77. York, I. A., Roop, C., Andrews, D. W., Riddell, S. R., Graham, F. L., and Johnson, D. C. (1994) A cytosolic herpes simplex virus protein inhibits antigen presentation to CD8+ T lymphocytes. Cell 77:525–35CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • V. Piguet
    • 1
  1. 1.Department of Dermatology and VenerologyHUGGenevaSwitzerland

Personalised recommendations