The Role of the Cytoskeleton During Viral Infection

  • K. Döhner
  • B. Sodeik
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 285)


Upon infection, virions or subviral nucleoprotein complexes are transported from the cell surface to the site of viral transcription and replication. During viral egress, particles containing viral proteins and nucleic acids again move from the site of their synthesis to that of virus assembly and further to the plasma membrane. Because free diffusion of molecules larger than 500 kDa is restricted in the cytoplasm, viruses as well as cellular organelles employ active, energy-consuming enzymes for directed transport. This is particularly evident in the case of neurotropic viruses that travel long distances in the axon during retrograde or anterograde transport. Viruses use two strategies for intracellular transport: Viral components either hijack the cytoplasmic membrane traffic or they interact directly with the cytoskeletal transport machinery. In this review we describe how viruses—particularly members of the Herpesviridae, Adenoviridae, Parvoviridae, Poxviridae, and Baculoviridae—make use of the microtubule and the actin cytoskeleton. Analysing the underlying principles of viral cytosolic transport will be helpful in the design of viral vectors to be used in research as well as human gene therapy, and in the identification of new antiviral target molecules.


Actin Filament Vaccinia Virus Rabies Virus African Swine Fever Virus Tegument Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allan, V, Näthke, IS (2001) Catch and pull a microtubule: getting a grasp on the cortex. Nat Cell Biol 3: E226–8CrossRefPubMedGoogle Scholar
  2. Alonso, C, Miskin, J, Hernaez, B, Fernandez-Zapatero, P, Soto, L, Canto, C, Rodriguez-Crespo, I, Dixon, L, Escribano, JM (2001) African swine fever virus protein p54 interacts with the microtubular motor complex through direct binding to light-chain dynein. J Virol 75:9819–27CrossRefPubMedGoogle Scholar
  3. Aniento, F, Emans, N, Griffiths, G, Gruenberg, J (1993) Cytoplasmic dynein-dependent vesicular transport from early to late endosomes. J Cell Biol 123:1373–87CrossRefPubMedGoogle Scholar
  4. Avitabile, E, Di Gaeta, S, Torrisi, MR, Ward, PL, Roizman, B, Campadelli-Fiume, G (1995) Redistribution of microtubules and Golgi apparatus in herpes simplex virus-infected cells and their role in viral exocytosis. J Virol 69:7472–82PubMedGoogle Scholar
  5. Ayscough, K (1998) Use of latrunculin-A, an actin monomer-binding drug. Methods Enzymol 298:18–25PubMedGoogle Scholar
  6. Bearer, EL, Breakefield, XO, Schuback, D, Reese, TS, LaVail, JH (2000) Retrograde axonal transport of herpes simplex virus: evidence for a single mechanism and a role for tegument. Proc Natl Acad Sci U S A 97:8146–50CrossRefPubMedGoogle Scholar
  7. Bowman, AB, Patel-King, RS, Benashski, SE, McCaffery, JM, Goldstein, LS, King, SM (1999) Drosophila roadblock and Chlamydomonas LC7: a conserved family of dynein-associated proteins involved in axonal transport, flagellar motility, and mitosis. J Cell Biol 146:165–80PubMedGoogle Scholar
  8. Brown, SS (1999) Cooperation between microtubule-and actin-based motor proteins. Annu Rev Cell Dev Biol 15:63–80CrossRefPubMedGoogle Scholar
  9. Brunet, JP, Jourdan, N, Cotte-Laffitte, J, Linxe, C, Geniteau-Legendre, M, Servin, A, Quero, AM (2000) Rotavirus infection induces cytoskeleton disorganization in human intestinal epithelial cells: implication of an increase in intracellular calcium concentration. J Virol 74:10801–6CrossRefPubMedGoogle Scholar
  10. Bubb, MR, Senderowicz, AM, Sausville, EA, Duncan, KL, Korn, ED (1994) Jasplakinolide, a cytotoxic natural product, induces actin polymerization and competitively inhibits the binding of phalloidin to F-actin. J Biol Chem 269:14869–71PubMedGoogle Scholar
  11. Bukrinskaya, A, Brichacek, B, Mann, A, Stevenson, M (1998) Establishment of a functional human immunodeficiency virus type 1 (HIV-1) reverse transcription complex involves the cytoskeleton. J Exp Med 188:2113–25CrossRefPubMedGoogle Scholar
  12. Burkhardt, JK, Echeverri, CJ, Nilsson, T, Vallee, RB (1997) Overexpression of the dynamitin (p50) subunit of the dynactin complex disrupts dynein-dependent maintenance of membrane organelle distribution. J Cell Biol 139:469–84CrossRefPubMedGoogle Scholar
  13. Ceccaldi, PE, Gillet, JP, Tsiang, H (1989) Inhibition of the transport of rabies virus in the central nervous system. J Neuropathol Exp Neurol 48:620–30PubMedGoogle Scholar
  14. Charlton, CA, Volkman, LE (1993) Penetration of Autographa californica nuclear polyhedrosis virus nucleocapsids into IPLB Sf 21 cells induces actin cable formation. Virology 197:245–54CrossRefPubMedGoogle Scholar
  15. Chen, PH, Ornelles, DA, Shenk, T (1993) The adenovirus L3 23-kilodalton proteinase cleaves the amino-terminal head domain from cytokeratin 18 and disrupts the cytokeratin network of HeLa cells. J Virol 67:3507–14PubMedGoogle Scholar
  16. Cooper, JA (1987) Effects of cytochalasin and phalloidin on actin. J Cell Biol 105:1473–8CrossRefPubMedGoogle Scholar
  17. Coulombe, PA, Bousquet, O, Ma, L, Yamada, S, Wirtz, D (2000) The ‘ins’ and ‘outs’ of intermediate filament organization. Trends Cell Biol 10:420–8CrossRefPubMedGoogle Scholar
  18. Coulombe, PA, Ma, L, Yamada, S, Wawersik, M (2001) Intermediate filaments at a glance. J Cell Sci 114:4345–7PubMedGoogle Scholar
  19. Cramer, LP, Mitchison, TJ (1995) Myosin is involved in postmitotic cell spreading. J Cell Biol 131:179–89CrossRefPubMedGoogle Scholar
  20. Cudmore, S, Cossart, P, Griffiths, G, Way, M (1995) Actin-based motility of vaccinia virus. Nature 378:636–8CrossRefPubMedGoogle Scholar
  21. Cudmore, S, Reckmann, I, Way, M (1997) Viral manipulations of the actin cytoskeleton. Trends Microbiol 5:142–8CrossRefPubMedGoogle Scholar
  22. Dales, S, Chardonnet, Y (1973) Early events in the interaction of adenoviruses with HeLa cells. IV. Association with microtubules and the nuclear pore complex during vectorial movement of the inoculum. Virology 56:465–83CrossRefPubMedGoogle Scholar
  23. Deacon, SW, Serpinskaya, AS, Vaughan, PS, Fanarraga, ML, Vernos, I, Vaughan, KT, Gelfand, VI (2003) Dynactin is required for bidirectional organelle transport. J Cell Biol 160:297–301CrossRefPubMedGoogle Scholar
  24. Desai, A, Mitchison, TJ (1997) Microtubule polymerization dynamics. Annu Rev Cell Dev Biol 13:83–117CrossRefPubMedGoogle Scholar
  25. Desai, A, Verma, S, Mitchison, TJ, Walczak, CE (1999) Kin I kinesins are microtubule-destabilizing enzymes. Cell 96:69–78CrossRefPubMedGoogle Scholar
  26. Diefenbach, RJ, Miranda-Saksena, M, Diefenbach, E, Holland, DJ, Boadle, RA, Armati, PJ, Cunningham, AL (2002) Herpes simplex virus tegument protein US11 interacts with conventional kinesin heavy chain. J Virol 76:3282–3291CrossRefPubMedGoogle Scholar
  27. Digard, P, Elton, D, Bishop, K, Medcalf, E, Weeds, A, Pope, B (1999) Modulation of nuclear localization of the influenza virus nucleoprotein through interaction with actin filaments. J Virol 73:2222–31PubMedGoogle Scholar
  28. Döhner, K, Wolfstein, A, Prank, U, Echeverri, C, Dujardin, D, Vallee, R, Sodeik, B (2002) Function of dynein and dynactin in herpes simplex virus capsid transport. Mol Biol Cell 13:2795–809CrossRefPubMedGoogle Scholar
  29. Doms, RW, Blumenthal, R, Moss, B (1990) Fusion of intra-and extracellular forms of vaccinia virus with the cell membrane. J Virol 64:4884–92PubMedGoogle Scholar
  30. Downing, KH (2000) Structural basis for the interaction of tubulin with proteins and drugs that affect microtubule dynamics. Annu Rev Cell Dev Biol 16:89–111CrossRefPubMedGoogle Scholar
  31. Dreschers, S, Roncarati, R, Knebel-Mörsdorf, D (2001) Actin rearrangement-inducing factor of baculoviruses is tyrosine phosphorylated and colocalizes to F-actin at the plasma membrane. J Virol 75:3771–8CrossRefPubMedGoogle Scholar
  32. Echeverri, CJ, Paschal, BM, Vaughan, KT, Vallee, RB (1996) Molecular characterization of the 50-kD subunit of dynactin reveals function for the complex in chromosome alignment and spindle organization during mitosis. J Cell Biol 132:617–33CrossRefPubMedGoogle Scholar
  33. Eckley, DM, Gill, SR, Melkonian, KA, Bingham, JB, Goodson, HV, Heuser, JE, Schroer, TA (1999) Analysis of dynactin subcomplexes reveals a novel actin-related protein associated with the arp1 minifilament pointed end. J Cell Biol 147:307–20CrossRefPubMedGoogle Scholar
  34. Elliott, G, O'Hare, P (1997) Intercellular trafficking and protein delivery by a herpesvirus structural protein. Cell 88:223–33CrossRefPubMedGoogle Scholar
  35. Elliott, G, O'Hare, P (1998) Herpes simplex virus type 1 tegument protein VP22 induces the stabilization and hyperacetylation of microtubules. J Virol 72:6448–55PubMedGoogle Scholar
  36. Elliott, G, O'Hare, P (1999) Live-cell analysis of a green fluorescent protein-tagged herpes simplex virus infection. J Virol 73:4110–9PubMedGoogle Scholar
  37. Espindola, FS, Suter, DM, Partata, LB, Cao, T, Wolenski, JS, Cheney, RE, King, SM, Mooseker, MS (2000) The light chain composition of chicken brain myosin-Va: calmodulin, myosin-II essential light chains, and 8-kDa dynein light chain/PIN. Cell Motil Cytoskeleton 47:269–81CrossRefPubMedGoogle Scholar
  38. Fackler, OT, Luo, W, Geyer, M, Alberts, AS, Peterlin, BM (1999) Activation of Vav by Nef induces cytoskeletal rearrangements and downstream effector functions. Mol Cell 3:729–39CrossRefPubMedGoogle Scholar
  39. Fackler, OT, Peterlin, BM (2000) Endocytic entry of HIV-1. Curr Biol 10:1005–8CrossRefPubMedGoogle Scholar
  40. Ferreira, LR, Moussatche, N, Moura Neto, V (1994) Rearrangement of intermediate filament network of BHK-21 cells infected with vaccinia virus. Arch Virol 138:273–85CrossRefPubMedGoogle Scholar
  41. Forshey, BM, Aiken, C (2003) Disassembly of human immunodeficiency virus type 1 cores in vitro reveals association of Nef with the subviral ribonucleoprotein complex. J Virol 77:4409–14CrossRefPubMedGoogle Scholar
  42. Frischknecht, F, Moreau, V, Rottger, S, Gonfloni, S, Reckmann, I, Superti-Furga, G, Way, M (1999) Actin-based motility of vaccinia virus mimics receptor tyrosine kinase signalling. Nature 401:926–9CrossRefPubMedGoogle Scholar
  43. Frischknecht, F, Way, M (2001) Surfing pathogens and the lessons learned for actin polymerization. Trends Cell Biol 11:30–38CrossRefPubMedGoogle Scholar
  44. Fuchs, E, Yang, Y (1999) Crossroads on cytoskeletal highways. Cell 98:547–50CrossRefPubMedGoogle Scholar
  45. Galigniana, MD, Radanyi, C, Renoir, JM, Housley, PR, Pratt, WB (2001) Evidence that the peptidylprolyl isomerase domain of the hsp90-binding immunophilin FKBP52 is involved in both dynein interaction and glucocorticoid receptor movement to the nucleus. J Biol Chem 276:14884–9CrossRefPubMedGoogle Scholar
  46. Garcia-Mata, R, Bebok, Z, Sorscher, EJ, Sztul, ES (1999) Characterization and dynamics of aggresome formation by a cytosolic GFP-chimera. J Cell Biol 146:1239–54CrossRefPubMedGoogle Scholar
  47. Garoff, H, Hewson, R, Opstelten, DJ (1998) Virus maturation by budding. Microbiol Mol Biol Rev 62:1171–90PubMedGoogle Scholar
  48. Geada, MM, Galindo, I, Lorenzo, MM, Perdiguero, B, Blasco, R (2001) Movements of vaccinia virus intracellular enveloped virions with GFP tagged to the F13L envelope protein. J Gen Virol 82:2747–60PubMedGoogle Scholar
  49. Georgi, A, Mottola-Hartshorn, C, Warner, A, Fields, B, Chen, LB (1990) Detection of individual fluorescently labeled reovirions in living cells. Proc Natl Acad Sci U S A 87:6579–83PubMedGoogle Scholar
  50. Giannakakou, P, Nakano, M, Nicolaou, KC, O'Brate, A, Yu, J, Blagosklonny, MV, Greber, UF, Fojo, T (2002) Enhanced microtubule-dependent trafficking and p53 nuclear accumulation by suppression of microtubule dynamics. Proc Natl Acad Sci U S A 99:10855–60CrossRefPubMedGoogle Scholar
  51. Giannakakou, P, Sackett, DL, Ward, Y, Webster, KR, Blagosklonny, MV, Fojo, T (2000) p53 is associated with cellular microtubules and is transported to the nucleus by dynein. Nat Cell Biol 2:709–17CrossRefPubMedGoogle Scholar
  52. Glotzer, JB, Michou, AI, Baker, A, Saltik, M, Cotten, M (2001) Microtubule-independent motility and nuclear targeting of adenoviruses with fluorescently labeled genomes. J Virol 75:2421–34CrossRefPubMedGoogle Scholar
  53. Goldstein, LS, Yang, Z (2000) Microtubule-based transport systems in neurons: the roles of kinesins and dyneins. Annu Rev Neurosci 23:39–71CrossRefPubMedGoogle Scholar
  54. Goode, BL, Drubin, DG, Barnes, G (2000) Functional cooperation between the microtubule and actin cytoskeletons. Curr Opin Cell Biol 12:63–71CrossRefPubMedGoogle Scholar
  55. Greber, UF, Willetts, M, Webster, P, Helenius, A (1993) Stepwise dismantling of adenovirus 2 during entry into cells. Cell 75:477–86CrossRefPubMedGoogle Scholar
  56. Greene, WC, Peterlin, BM (2002) Charting HIV's remarkable voyage through the cell: Basic science as a passport to future therapy. Nat Med 8:673–80CrossRefPubMedGoogle Scholar
  57. Gupta, S, De, BP, Drazba, JA, Banerjee, AK (1998) Involvement of actin microfilaments in the replication of human parainfluenza virus type 3. J Virol 72:2655–62PubMedGoogle Scholar
  58. Gurland, G, Gundersen, GG (1995) Stable, detyrosinated microtubules function to localize vimentin intermediate filaments in fibroblasts. J Cell Biol 131:1275–90CrossRefPubMedGoogle Scholar
  59. Hanlon, DW, Yang, Z, Goldstein, LS (1997) Characterization of KIFC2, a neuronal kinesin superfamily member in mouse. Neuron 18:439–51CrossRefPubMedGoogle Scholar
  60. Heath, CM, Windsor, M, Wileman, T (2001) Aggresomes resemble sites specialized for virus assembly. J Cell Biol 153:449–55CrossRefPubMedGoogle Scholar
  61. Herrmann, C, Wray, J, Travers, F, Barman, T (1992) Effect of 2,3-butanedione monoxime on myosin and myofibrillar ATPases. An example of an uncompetitive inhibitor. Biochemistry 31:12227–32CrossRefPubMedGoogle Scholar
  62. Hirokawa, N, Takemura, R. (2003). Kinesin superfamily proteins. In Molecular Motors (M. Schliwa, ed.), pp. 79–109. Wiley-VCH Verlag, WeinheimGoogle Scholar
  63. Hofmann, W, Reichart, B, Ewald, A, Muller, E, Schmitt, I, Stauber, RH, Lottspeich, F, Jockusch, BM, Scheer, U, Hauber, J, Dabauvalle, MC (2001) Cofactor requirements for nuclear export of Rev response element (RRE)-and constitutive transport element (CTE)-containing retroviral RNAs. An unexpected role for actin. J Cell Biol 152:895–910CrossRefPubMedGoogle Scholar
  64. Hogle, JM (2002) Poliovirus cell entry: common structural themes in viral cell entry pathways. Annu Rev Microbiol 56:677–702CrossRefPubMedGoogle Scholar
  65. Holland, DJ, Miranda-Saksena, M, Boadle, RA, Armati, P, Cunningham, AL (1999) Anterograde transport of herpes simplex virus proteins in axons of peripheral human fetal neurons: an immunoelectron microscopy study. J Virol 73:8503–11PubMedGoogle Scholar
  66. Holleran, EA, Karki, S, Holzbaur, EL (1998) The role of the dynactin complex in intracellular motility. Int Rev Cytol 182:69–109PubMedGoogle Scholar
  67. Hollinshead, M, Rodger, G, Van Eijl, H, Law, M, Hollinshead, R, Vaux, DJ, Smith, GL (2001) Vaccinia virus utilizes microtubules for movement to the cell surface. J Cell Biol 154:389–402CrossRefPubMedGoogle Scholar
  68. Howard, J, Hyman, AA (2003) Dynamics and mechanics of the microtubule plus end. Nature 422:753–8CrossRefPubMedGoogle Scholar
  69. Hunter, AW, Caplow, M, Coy, DL, Hancock, WO, Diez, S, Wordeman, L, Howard, J (2003) The kinesin-related protein MCAK is a microtubule depolymerase that forms an ATP-hydrolyzing complex at microtubule ends. Mol Cell 11:445–57CrossRefPubMedGoogle Scholar
  70. Igakura, T, Stinchcombe, JC, Goon, PK, Taylor, GP, Weber, JN, Griffiths, GM, Tanaka, Y, Osame, M, Bangham, CR (2003) Spread of HTLV-I between lymphocytes by virus-induced polarization of the cytoskeleton. Science 299:1713–6CrossRefPubMedGoogle Scholar
  71. Iyengar, S, Hildreth, JE, Schwartz, DH (1998) Actin-dependent receptor colocalization required for human immunodeficiency virus entry into host cells. J Virol 72:5251–5PubMedGoogle Scholar
  72. Jacob, Y, Badrane, H, Ceccaldi, PE, Tordo, N (2000) Cytoplasmic dynein LC8 interacts with lyssavirus phosphoprotein. J Virol 74:10217–22CrossRefPubMedGoogle Scholar
  73. Jaffrey, SR, Snyder, SH (1996) PIN: an associated protein inhibitor of neuronal nitric oxide synthase. Science 274:774–7CrossRefPubMedGoogle Scholar
  74. Jimbo, T, Kawasaki, Y, Koyama, R, Sato, R, Takada, S, Haraguchi, K, Akiyama, T (2002) Identification of a link between the tumour suppressor APC and the kinesin superfamily. Nat Cell Biol 4:323–7CrossRefPubMedGoogle Scholar
  75. Jordan, MA, Wilson, L (1999) The use and action of drugs in analyzing mitosis. Methods Cell Biol 61:267–95PubMedGoogle Scholar
  76. Karcher, RL, Deacon, SW, Gelfand, VI (2002) Motor-cargo interactions: the key to transport specificity. Trends Cell Biol 12:21–7CrossRefPubMedGoogle Scholar
  77. Karki, S, Holzbaur, EL (1999) Cytoplasmic dynein and dynactin in cell division and intracellular transport. Curr Opin Cell Biol 11:45–53CrossRefPubMedGoogle Scholar
  78. Kasman, LM, Volkman, LE (2000) Filamentous actin is required for lepidopteran nucleopolyhedrovirus progeny production. J Gen Virol 81:1881–8PubMedGoogle Scholar
  79. Keating, TJ, Borisy, GG (1999) Centrosomal and non-centrosomal microtubules. Biol Cell 91:321–9CrossRefPubMedGoogle Scholar
  80. Kieke, MC, Titus, MA. (2003). The myosin superfamily: An overview. In Molecular Motors (M. Schliwa, ed.), pp. 3–44. Wiley-VCH Verlag, WeinheimGoogle Scholar
  81. Kim, W, Tang, Y, Okada, Y, Torrey, TA, Chattopadhyay, SK, Pfleiderer, M, Falkner, FG, Dorner, F, Choi, W, Hirokawa, N, Morse, HC, 3rd (1998) Binding of murine leukemia virus Gag polyproteins to KIF4, a microtubule-based motor protein. J Virol 72:6898–901PubMedGoogle Scholar
  82. Kimura, T, Hashimoto, I, Yamamoto, A, Nishikawa, M, Fujisawa, JI (2000) Rev-dependent association of the intron-containing HIV-1 gag mRNA with the nuclear actin bundles and the inhibition of its nucleocytoplasmic transport by latrunculin-B. Genes Cells 5:289–307CrossRefPubMedGoogle Scholar
  83. King, SM (2000) AAA domains and organization of the dynein motor unit. J Cell Sci 113:2521–6PubMedGoogle Scholar
  84. King, SM. (2003). Dynein motors: Structure, mechanochemistry and regulation. In Molecular Motors (M. Schliwa, ed.), pp. 45–78. Wiley-VCH Verlag, WeinheimGoogle Scholar
  85. Klupp, BG, Granzow, H, Mettenleiter, TC (2000) Primary envelopment of pseudorabies virus at the nuclear membrane requires the UL34 gene product. J Virol 74:10063–73CrossRefPubMedGoogle Scholar
  86. Kopito, RR (2000) Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol 10:524–30CrossRefPubMedGoogle Scholar
  87. Kotsakis, A, Pomeranz, LE, Blouin, A, Blaho, JA (2001) Microtubule reorganization during herpes simplex virus type 1 infection facilitates the nuclear localization of VP22, a major virion tegument protein. J Virol 75:8697–711CrossRefPubMedGoogle Scholar
  88. Krijnse Locker, J, Kuehn, A, Schleich, S, Rutter, G, Hohenberg, H, Wepf, R, Griffiths, G (2000) Entry of the two infectious forms of vaccinia virus at the plasma membrane is signaling-dependent for the IMV but not the EEV. Mol Biol Cell 11:2497–511PubMedGoogle Scholar
  89. Kristensson, K, Lycke, E, Roytta, M, Svennerholm, B, Vahlne, A (1986) Neuritic transport of herpes simplex virus in rat sensory neurons in vitro. Effects of substances interacting with microtubular function and axonal flow [nocodazole, taxol and erythro-9-3-(2-hydroxynonyl)adenine]. J Gen Virol 67:2023–8PubMedGoogle Scholar
  90. Lanier, LM, Volkman, LE (1998) Actin binding and nucleation by Autographa californica M nucleopolyhedrovirus. Virology 243:167–77CrossRefPubMedGoogle Scholar
  91. Leopold, PL, Ferris, B, Grinberg, I, Worgall, S, Hackett, NR, Crystal, RG (1998) Fluorescent virions: dynamic tracking of the pathway of adenoviral gene transfer vectors in living cells. Hum Gene Ther 9:367–78PubMedGoogle Scholar
  92. Leopold, PL, Kreitzer, G, Miyazawa, N, Rempel, S, Pfister, KK, Rodriguez-Boulan, E, Crystal, RG (2000) Dynein-and microtubule-mediated translocation of adenovirus serotype 5 occurs after endosomal lysis. Hum Gene Ther 11:151–65CrossRefPubMedGoogle Scholar
  93. Leung, CL, Green, KJ, Liem, RK (2002) Plakins: a family of versatile cytolinker proteins. Trends Cell Biol 12:37–45CrossRefPubMedGoogle Scholar
  94. Lippincott-Schwartz, J, Roberts, TH, Hirschberg, K (2000) Secretory protein trafficking and organelle dynamics in living cells. Annu Rev Cell Dev Biol 16:557–89CrossRefPubMedGoogle Scholar
  95. Liu, B, Dai, R, Tian, CJ, Dawson, L, Gorelick, R, Yu, XF (1999) Interaction of the human immunodeficiency virus type 1 nucleocapsid with actin. J Virol 73:2901–8PubMedGoogle Scholar
  96. Lo, KW, Naisbitt, S, Fan, JS, Sheng, M, Zhang, M (2001) The 8-kDa dynein light chain binds to its targets via a conserved (K/R)XTQT motif. J Biol Chem 276:14059–66CrossRefPubMedGoogle Scholar
  97. Luby-Phelps, K (2000) Cytoarchitecture and physical properties of cytoplasm: volume, viscosity, diffusion, intracellular surface area. Int Rev Cytol 192:189–221PubMedGoogle Scholar
  98. Luftig, RB, Lupo, LD (1994) Viral interactions with the host-cell cytoskeleton: the role of retroviral proteases. Trends Microbiol 2:178–82CrossRefPubMedGoogle Scholar
  99. Luftig, RB, Weihing, RR (1975) Adenovirus binds to rat brain microtubules in vitro. J Virol 16:696–706PubMedGoogle Scholar
  100. Lukashok, SA, Tarassishin, L, Li, Y, Horwitz, MS (2000) An adenovirus inhibitor of tumor necrosis factor alpha-induced apoptosis complexes with dynein and a small GTPase. J Virol 74:4705–9CrossRefPubMedGoogle Scholar
  101. Lycke, E, Hamark, B, Johansson, M, Krotochwil, A, Lycke, J, Svennerholm, B (1988) Herpes simplex virus infection of the human sensory neuron. An electron microscopy study. Arch Virol 101:87–104CrossRefPubMedGoogle Scholar
  102. Mabit, H, Nakano, MY, Prank, U, Saam, B, Döhner, K, Sodeik, B, Greber, UF (2002) Intact microtubules support adenovirus and herpes simplex virus infections. J Virol 76:9962–71CrossRefPubMedGoogle Scholar
  103. Machesky, LM, Insall, RH, Volkman, LE (2001) WASP homology sequences in baculoviruses. Trends Cell Biol 11:286–7CrossRefPubMedGoogle Scholar
  104. Mallardo, M, Schleich, S, Krijnse Locker, J (2001) Microtubule-dependent organization of vaccinia virus core-derived early mRNAs into distinct cytoplasmic structures. Mol Biol Cell 12:3875–91PubMedGoogle Scholar
  105. Marsh, M, Bron, R (1997) SFV infection in CHO cells: cell-type specific restrictions to productive virus entry at the cell surface. J Cell Sci 110:95–103PubMedGoogle Scholar
  106. Martin, A, O'Hare, P, McLauchlan, J, Elliott, G (2002) Herpes simplex virus tegument protein VP22 contains overlapping domains for cytoplasmic localization, microtubule interaction, and chromatin binding. J Virol 76:4961–70CrossRefPubMedGoogle Scholar
  107. Martinez-Moreno, M, Navarro-Lerida, I, Roncal, F, Albar, JP, Alonso, C, Gavilanes, F, Rodriguez-Crespo, I (2003) Recognition of novel viral sequences that associate with the dynein light chain LC8 identified through a pepscan technique. FEBS Lett 544:262–267CrossRefPubMedGoogle Scholar
  108. McDonald, D, Vodicka, MA, Lucero, G, Svitkina, TM, Borisy, GG, Emerman, M, Hope, TJ (2002) Visualization of the intracellular behavior of HIV in living cells. J Cell Biol 159:441–52CrossRefPubMedGoogle Scholar
  109. Mebatsion, T (2001) Extensive attenuation of rabies virus by simultaneously modifying the dynein light chain binding site in the P protein and replacing Arg333 in the G protein. J Virol 75:11496–502CrossRefPubMedGoogle Scholar
  110. Merdes, A, Cleveland, DW (1997) Pathways of spindle pole formation: different mechanisms; conserved components. J Cell Biol 138:953–6CrossRefPubMedGoogle Scholar
  111. Mery, PF, Pavoine, C, Pecker, F, Fischmeister, R (1995) Erythro-9-(2-hydroxy-3-nonyl)adenine inhibits cyclic GMP-stimulated phosphodiesterase in isolated cardiac myocytes. Mol Pharmacol 48:121–30PubMedGoogle Scholar
  112. Mettenleiter, TC (2002) Herpesvirus assembly and egress. J Virol 76:1537–47CrossRefPubMedGoogle Scholar
  113. Miles, BD, Luftig, RB, Weatherbee, JA, Weihing, RR, Weber, J (1980) Quantitation of the interaction between adenovirus types 2 and 5 and microtubules inside infected cells. Virology 105:265–9CrossRefPubMedGoogle Scholar
  114. Miller, N, Hutt-Fletcher, LM (1992) Epstein-Barr virus enters B cells and epithelial cells by different routes. J Virol 66:3409–14PubMedGoogle Scholar
  115. Miranda-Saksena, M, Armati, P, Boadle, RA, Holland, DJ, Cunningham, AL (2000) Anterograde transport of herpes simplex virus type 1 in cultured, dissociated human and rat dorsal root ganglion neurons. J Virol 74:1827–39CrossRefPubMedGoogle Scholar
  116. Mitchison, T, Kirschner, M (1984) Dynamic instability of microtubule growth. Nature 312:237–42CrossRefPubMedGoogle Scholar
  117. Mojon, D, Zhang, W, Oetliker, H (1993) Inhibition by 2,3-butanedione-monoxime of mitochondrial ADP-dependent respiration and muscle contraction. Biochem Mol Biol Int 31:501–7PubMedGoogle Scholar
  118. Moreau, V, Frischknecht, F, Reckmann, I, Vincentelli, R, Rabut, G, Stewart, D, Way, M (2000) A complex of N-WASP and WIP integrates signalling cascades that lead to actin polymerization. Nat Cell Biol 2:441–8CrossRefPubMedGoogle Scholar
  119. Mouland, AJ, Xu, H, Cui, H, Krueger, W, Munro, TP, Prasol, M, Mercier, J, Rekosh, D, Smith, R, Barbarese, E, Cohen, EA, Carson, JH (2001) RNA trafficking signals in human immunodeficiency virus type 1. Mol Cell Biol 21:2133–43CrossRefPubMedGoogle Scholar
  120. Mueller, S, Cao, X, Welker, R, Wimmer, E (2002) Interaction of the poliovirus receptor CD155 with the dynein light chain Tctex-1 and its implication for poliovirus pathogenesis. J Biol Chem 277:7897–904CrossRefPubMedGoogle Scholar
  121. Nakanishi, S, Kakita, S, Takahashi, I, Kawahara, K, Tsukuda, E, Sano, T, Yamada, K, Yoshida, M, Kase, H, Matsuda, Y, et al. (1992) Wortmannin, a microbial product inhibitor of myosin light chain kinase. J Biol Chem 267:2157–63PubMedGoogle Scholar
  122. Nakanishi, S, Yamada, K, Iwahashi, K, Kuroda, K, Kase, H (1990) KT5926, a potent and selective inhibitor of myosin light chain kinase. Mol Pharmacol 37:482–8PubMedGoogle Scholar
  123. Nangaku, M, Sato-Yoshitake, R, Okada, Y, Noda, Y, Takemura, R, Yamazaki, H, Hirokawa, N (1994) KIF1B, a novel microtubule plus end-directed monomeric motor protein for transport of mitochondria. Cell 79:1209–20CrossRefPubMedGoogle Scholar
  124. Nicola, AV, McEvoy, AM, Straus, SE (2003) Roles for endocytosis and low pH in herpes simplex virus entry into HeLa and Chinese hamster ovary cells. J Virol 77:5324–32CrossRefPubMedGoogle Scholar
  125. Noda, Y, Okada, Y, Saito, N, Setou, M, Xu, Y, Zhang, Z, Hirokawa, N (2001) KIFC3, a microtubule minus end-directed motor for the apical transport of annexin XIIIb-associated Triton-insoluble membranes. J Cell Biol 155:77–88CrossRefPubMedGoogle Scholar
  126. Nurminsky, DI, Nurminskaya, MV, Benevolenskaya, EV, Shevelyov, YY, Hartl, DL, Gvozdev, VA (1998) Cytoplasmic dynein intermediate-chain isoforms with different targeting properties created by tissue-specific alternative splicing. Mol Cell Biol 18:6816–25PubMedGoogle Scholar
  127. Ohara, PT, Chin, MS, LaVail, JH (2000) The spread of herpes simplex virus type 1 from trigeminal neurons to the murine cornea: an immunoelectron microscopy study. J Virol 74:4776–86CrossRefPubMedGoogle Scholar
  128. Ohkawa, T, Rowe, AR, Volkman, LE (2002) Identification of six Autographa californica multicapsid nucleopolyhedrovirus early genes that mediate nuclear localization of G-actin. J Virol 76:12281–9CrossRefPubMedGoogle Scholar
  129. Ohkawa, T, Volkman, LE (1999) Nuclear F-actin is required for AcMNPV nucleocapsid morphogenesis. Virology 264:1–4CrossRefPubMedGoogle Scholar
  130. Ojala, PM, Sodeik, B, Ebersold, MW, Kutay, U, Helenius, A (2000) Herpes simplex virus type 1 entry into host cells: reconstitution of capsid binding and uncoating at the nuclear pore complex in vitro. Mol Cell Biol 20:4922–31CrossRefPubMedGoogle Scholar
  131. Okada, Y, Yamazaki, H, Sekine-Aizawa, Y, Hirokawa, N (1995) The neuron-specific kinesin superfamily protein KIF1A is a unique monomeric motor for anterograde axonal transport of synaptic vesicle precursors. Cell 81:769–80CrossRefPubMedGoogle Scholar
  132. Ott, DE, Coren, LV, Kane, BP, Busch, LK, Johnson, DG, Sowder, RC, 2nd, Chertova, EN, Arthur, LO, Henderson, LE (1996) Cytoskeletal proteins inside human immunodeficiency virus type 1 virions. J Virol 70:7734–43PubMedGoogle Scholar
  133. Payne, LG, Norrby, E (1978) Adsorption and penetration of enveloped and naked vaccinia virus particles. J Virol 27:19–27PubMedGoogle Scholar
  134. Pederson, T, Aebi, U (2002) Actin in the nucleus: what form and what for? J Struct Biol 140:3–9CrossRefPubMedGoogle Scholar
  135. Penfold, ME, Armati, P, Cunningham, AL (1994) Axonal transport of herpes simplex virions to epidermal cells: evidence for a specialized mode of virus transport and assembly. Proc Natl Acad Sci U S A 91:6529–33PubMedGoogle Scholar
  136. Penningroth, SM (1986) Erythro-9-[3-(2-hydroxynonyl)]adenine and vanadate as probes for microtubule-based cytoskeletal mechanochemistry. Methods Enzymol 134:477–87PubMedGoogle Scholar
  137. Peretti, D, Peris, L, Rosso, S, Quiroga, S, Caceres, A (2000) Evidence for the involvement of KIF4 in the anterograde transport of L1-containing vesicles. J Cell Biol 149:141–52CrossRefPubMedGoogle Scholar
  138. Phillips, RM, Altschuld, RA (1996) 2,3-Butanedione 2-monoxime (BDM) induces calcium release from canine cardiac sarcoplasmic reticulum. Biochem Biophys Res Commun 229:154–7CrossRefPubMedGoogle Scholar
  139. Ploubidou, A, Moreau, V, Ashman, K, Reckmann, I, Gonzalez, C, Way, M (2000) Vaccinia virus infection disrupts microtubule organization and centrosome function. EMBO J 19:3932–44CrossRefPubMedGoogle Scholar
  140. Ploubidou, A, Way, M (2001) Viral transport and the cytoskeleton. Curr Opin Cell Biol 13:97–105CrossRefPubMedGoogle Scholar
  141. Poisson, N, Real, E, Gaudin, Y, Vaney, MC, King, S, Jacob, Y, Tordo, N, Blondel, D (2001) Molecular basis for the interaction between rabies virus phosphoprotein P and the dynein light chain LC8: dissociation of dynein-binding properties and transcriptional functionality of P. J Gen Virol 82:2691–6PubMedGoogle Scholar
  142. Rando, OJ, Zhao, K, Crabtree, GR (2000) Searching for a function for nuclear actin. Trends Cell Biol 10:92–7CrossRefPubMedGoogle Scholar
  143. Raux, H, Flamand, A, Blondel, D (2000) Interaction of the rabies virus P protein with the LC8 dynein light chain. J Virol 74:10212–6CrossRefPubMedGoogle Scholar
  144. Reynolds, AE, Wills, EG, Roller, RJ, Ryckman, BJ, Baines, JD (2002) Ultrastructural localization of the herpes simplex virus type 1 UL31, UL34, and US3 proteins suggests specific roles in primary envelopment and egress of nucleocapsids. J Virol 76:8939–52CrossRefPubMedGoogle Scholar
  145. Richard de Soultrait, V, Caumont, A, Durrens, P, Calmels, C, Parissi, V, Recordon, P, Bon, E, Desjobert, C, Tarrago-Litvak, L, Fournier, M (2002) HIV-1 integrase interacts with yeast microtubule-associated proteins. Biochim Biophys Acta 1575:40–8PubMedGoogle Scholar
  146. Rietdorf, J, Ploubidou, A, Reckmann, I, Holmstrom, A, Frischknecht, F, Zettl, M, Zimmermann, T, Way, M (2001) Kinesin-dependent movement on microtubules precedes actin-based motility of vaccinia virus. Nat Cell Biol 3:992–1000CrossRefPubMedGoogle Scholar
  147. Rodriguez-Crespo, I, Yelamos, B, Roncal, F, Albar, JP, Ortiz de Montellano, PR, Gavilanes, F (2001) Identification of novel cellular proteins that bind to the LC8 dynein light chain using a pepscan technique. FEBS Lett 503:135–41CrossRefPubMedGoogle Scholar
  148. Roizman, B, Knipe, DM. (2001). Herpes simplex viruses and their replication. In Fundamental Virology (D. M. Knipe and P. M. Howley, eds.), pp. 1123–1183. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  149. Roncarati, R, Knebel-Mörsdorf, D (1997) Identification of the early actin-rearrangement-inducing factor gene, arif-1, from Autographa californica multicapsid nuclear polyhedrosis virus. J Virol 71:7933–41PubMedGoogle Scholar
  150. Ruchhoeft, ML, Harris, WA (1997) Myosin functions in Xenopus retinal ganglion cell growth cone motility in vivo. J Neurobiol 32:567–78CrossRefPubMedGoogle Scholar
  151. Saib, A, Puvion-Dutilleul, F, Schmid, M, Peries, J, de The, H (1997) Nuclear targeting of incoming human foamy virus Gag proteins involves a centriolar step. J Virol 71:1155–61PubMedGoogle Scholar
  152. Saito, N, Okada, Y, Noda, Y, Kinoshita, Y, Kondo, S, Hirokawa, N (1997) KIFC2 is a novel neuron-specific C-terminal type kinesin superfamily motor for dendritic transport of multivesicular body-like organelles. Neuron 18:425–38CrossRefPubMedGoogle Scholar
  153. Sakowicz, R, Berdelis, MS, Ray, K, Blackburn, CL, Hopmann, C, Faulkner, DJ, Goldstein, LS (1998) A marine natural product inhibitor of kinesin motors. Science 280:292–5CrossRefPubMedGoogle Scholar
  154. Sanderson, CM, Hollinshead, M, Smith, GL (2000) The vaccinia virus A27L protein is needed for the microtubule-dependent transport of intracellular mature virus particles. J Gen Virol 81 Pt 1:47–58PubMedGoogle Scholar
  155. Sanderson, CM, Way, M, Smith, GL (1998) Virus-induced cell motility. J Virol 72:1235–43PubMedGoogle Scholar
  156. Sanlioglu, S, Benson, PK, Yang, J, Atkinson, EM, Reynolds, T, Engelhardt, JF (2000) Endocytosis and nuclear trafficking of adeno-associated virus type 2 are controlled by rac1 and phosphatidylinositol-3 kinase activation. J Virol 74:9184–96CrossRefPubMedGoogle Scholar
  157. Sasaki, H, Nakamura, M, Ohno, T, Matsuda, Y, Yuda, Y, Nonomura, Y (1995) Myosin-actin interaction plays an important role in human immunodeficiency virus type 1 release from host cells. Proc Natl Acad Sci U S A 92:2026–30PubMedGoogle Scholar
  158. Scaplehorn, N, Holmstrom, A, Moreau, V, Frischknecht, F, Reckmann, I, Way, M (2002) Grb2 and Nck act cooperatively to promote actin-based motility of vaccinia virus. Curr Biol 12:740–5CrossRefPubMedGoogle Scholar
  159. Schaeffer, E, Geleziunas, R, Greene, WC (2001) Human immunodeficiency virus type 1 Nef functions at the level of virus entry by enhancing cytoplasmic delivery of virions. J Virol 75:2993–3000CrossRefPubMedGoogle Scholar
  160. Schlichter, LC, Pahapill, PA, Chung, I (1992) Dual action of 2,3-butanedione monoxime (BDM) on K+ current in human T lymphocytes. J Pharmacol Exp Ther 261:438–46PubMedGoogle Scholar
  161. Schliwa, M, Woehlke, G (2003) Molecular motors. Nature 422:759–65CrossRefPubMedGoogle Scholar
  162. Schnapp, BJ (2003) Trafficking of signaling modules by kinesin motors. J Cell Sci 116:2125–35CrossRefPubMedGoogle Scholar
  163. Seisenberger, G, Ried, MU, Endress, T, Buning, H, Hallek, M, Brauchle, C (2001) Real-time single-molecule imaging of the infection pathway of an adeno-associated virus. Science 294:1929–32CrossRefPubMedGoogle Scholar
  164. Shah, JV, Flanagan, LA, Janmey, PA, Leterrier, JF (2000) Bidirectional translocation of neurofilaments along microtubules mediated in part by dynein/dynactin. Mol Biol Cell 11:3495–508PubMedGoogle Scholar
  165. Sharp, DJ, Rogers, GC, Scholey, JM (2000) Cytoplasmic dynein is required for poleward chromosome movement during mitosis in Drosophila embryos. Nat Cell Biol 2:922–30CrossRefPubMedGoogle Scholar
  166. Shenk, T. (2001). Adenoviridae: The viruses and their replication. In Fundamental Virology (D. M. Knipe and P. M. Howley, eds.), pp. 1053–1088. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  167. Skepper, JN, Whiteley, A, Browne, H, Minson, A (2001) Herpes simplex virus nucleocapsids mature to progeny virions by an envelopment→deenvelopment→reen-\to reenvelopmentpathway. J Virol 75: 5697–702CrossRefPubMedGoogle Scholar
  168. Smith, GA, Enquist, LW (2002) Break ins and break outs: Viral interactions with the cytoskeleton of mammalian cells. Annu Rev Cell Dev Biol 18:135–61CrossRefPubMedGoogle Scholar
  169. Smith, GA, Gross, SP, Enquist, LW (2001) Herpesviruses use bidirectional fast-axonal transport to spread in sensory neurons. Proc Natl Acad Sci U S A 98:3466–70CrossRefPubMedGoogle Scholar
  170. Smith, GL, Vanderplasschen, A, Law, M (2002) The formation and function of extracellular enveloped vaccinia virus. J Gen Virol 83:2915–31PubMedGoogle Scholar
  171. Sodeik, B (2000) Mechanisms of viral transport in the cytoplasm. Trends Microbiol 8:465–72CrossRefPubMedGoogle Scholar
  172. Sodeik, B (2002) Unchain my heart, baby let me go—the entry and intracellular transport of HIV. J Cell Biol 159:393–5CrossRefPubMedGoogle Scholar
  173. Sodeik, B, Doms, RW, Ericsson, M, Hiller, G, Machamer, CE, van't Hof, W, van Meer, G, Moss, B, Griffiths, G (1993) Assembly of vaccinia virus: role of the intermediate compartment between the endoplasmic reticulum and the Golgi stacks. J Cell Biol 121:521–41CrossRefPubMedGoogle Scholar
  174. Sodeik, B, Ebersold, MW, Helenius, A (1997) Microtubule-mediated transport of incoming herpes simplex virus 1 capsids to the nucleus. J Cell Biol 136:1007–21CrossRefPubMedGoogle Scholar
  175. Sodeik, B, Krijnse-Locker, J (2002) Assembly of vaccinia virus revisited: de novo membrane synthesis or acquisition from the host? Trends Microbiol 10:15–24CrossRefPubMedGoogle Scholar
  176. Suikkanen, S, Aaltonen, T, Nevalainen, M, Välilehto, O, Lindholm, L, Vuento, M, Vihinen-Ranta, M (2003) Exploitation of microtubule cytoskeleton and dynein during parvoviral traffic towards the nucleus. J Virol 77:10270–9CrossRefPubMedGoogle Scholar
  177. Suikkanen, S, Saajarvi, K, Hirsimaki, J, Valilehto, O, Reunanen, H, Vihinen-Ranta, M, Vuento, M (2002) Role of recycling endosomes and lysosomes in dynein-dependent entry of canine parvovirus. J Virol 76:4401–11CrossRefPubMedGoogle Scholar
  178. Suomalainen, M, Nakano, MY, Boucke, K, Keller, S, Greber, UF (2001) Adenovirus-activated PKA and p38/MAPK pathways boost microtubule-mediated nuclear targeting of virus. EMBO J 20:1310–9CrossRefPubMedGoogle Scholar
  179. Suomalainen, M, Nakano, MY, Keller, S, Boucke, K, Stidwill, RP, Greber, UF (1999) Microtubule-dependent plus-and minus end-directed motilities are competing processes for nuclear targeting of adenovirus. J Cell Biol 144:657–72CrossRefPubMedGoogle Scholar
  180. Susalka, SJ, Nikulina, K, Salata, MW, Vaughan, PS, King, SM, Vaughan, KT, Pfister, KK (2002) The roadblock light chain binds a novel region of the cytoplasmic dynein intermediate chain. J Biol Chem 277:32939–46CrossRefPubMedGoogle Scholar
  181. Tai, AW, Chuang, JZ, Sung, CH (2001) Cytoplasmic dynein regulation by subunit heterogeneity and its role in apical transport. J Cell Biol 153:1499–510CrossRefPubMedGoogle Scholar
  182. Takeda, S, Yamazaki, H, Seog, DH, Kanai, Y, Terada, S, Hirokawa, N (2000) Kinesin superfamily protein 3 (KIF3) motor transports fodrin-associating vesicles important for neurite building. J Cell Biol 148:1255–65CrossRefPubMedGoogle Scholar
  183. Tang, Q, Staub, CM, Gao, G, Jin, Q, Wang, Z, Ding, W, Aurigemma, RE, Mulder, KM (2002) A novel transforming growth factor-beta receptor-interacting protein that is also a light chain of the motor protein dynein. Mol Biol Cell 13:4484–96CrossRefPubMedGoogle Scholar
  184. Tang, Y, Winkler, U, Freed, EO, Torrey, TA, Kim, W, Li, H, Goff, SP, Morse, HC, 3rd (1999) Cellular motor protein KIF-4 associates with retroviral Gag. J Virol 73: 10508–13PubMedGoogle Scholar
  185. Tekotte, H, Davis, I (2002) Intracellular mRNA localization: motors move messages. Trends Genet 18:636–42CrossRefPubMedGoogle Scholar
  186. Tolonen, N, Doglio, L, Schleich, S, Krijnse Locker, J (2001) Vaccinia virus DNA replication occurs in endoplasmic reticulum-enclosed cytoplasmic mini-nuclei. Mol Biol Cell 12:2031–46PubMedGoogle Scholar
  187. Tomishima, MJ, Enquist, LW (2001) A conserved α-herpesvirus protein necessary for axonal localization of viral membrane proteins. J Cell Biol 154:741–752CrossRefPubMedGoogle Scholar
  188. Topp, KS, Bisla, K, Saks, ND, Lavail, JH (1996) Centripetal transport of herpes simplex virus in human retinal pigment epithelial cells in vitro. Neuroscience 71:1133–44CrossRefPubMedGoogle Scholar
  189. Topp, KS, Meade, LB, LaVail, JH (1994) Microtubule polarity in the peripheral processes of trigeminal ganglion cells: relevance for the retrograde transport of herpes simplex virus. J Neurosci 14:318–25PubMedGoogle Scholar
  190. Trotman, LC, Mosberger, N, Fornerod, M, Stidwill, RP, Greber, UF (2001) Import of adenovirus DNA involves the nuclear pore complex receptor CAN/Nup214 and histone H1. Nat Cell Biol 3:1092–100CrossRefPubMedGoogle Scholar
  191. Tsiang, H, Ceccaldi, PE, Lycke, E (1991) Rabies virus infection and transport in human sensory dorsal root ganglia neurons. J Gen Virol 72:1191–4PubMedGoogle Scholar
  192. Valetti, C, Wetzel, DM, Schrader, M, Hasbani, MJ, Gill, SR, Kreis, TE, Schroer, TA (1999) Role of dynactin in endocytic traffic: effects of dynamitin overexpression and colocalization with CLIP-170. Mol Biol Cell 10:4107–20PubMedGoogle Scholar
  193. van Eijl, H, Hollinshead, M, Rodger, G, Zhang, WH, Smith, GL (2002) The vaccinia virus F12L protein is associated with intracellular enveloped virus particles and is required for their egress to the cell surface. J Gen Virol 83:195–207PubMedGoogle Scholar
  194. van Leeuwen, H, Elliott, G, O'Hare, P (2002) Evidence of a role for nonmuscle myosin II in herpes simplex virus type 1 egress. J Virol 76:3471–81CrossRefPubMedGoogle Scholar
  195. van Loo, ND, Fortunati, E, Ehlert, E, Rabelink, M, Grosveld, F, Scholte, BJ (2001) Baculovirus infection of nondividing mammalian cells: mechanisms of entry and nuclear transport of capsids. J Virol 75:961–70CrossRefPubMedGoogle Scholar
  196. Vanderplasschen, A, Hollinshead, M, Smith, GL (1998) Intracellular and extracellular vaccinia virions enter cells by different mechanisms. J Gen Virol 79:877–87PubMedGoogle Scholar
  197. Verhey, KJ. (2003). Motors and membrane trafficking. In Molecular Motors (M. Schliwa, ed.), pp. 377–409. Wiley-VCH Verlag, WeinheimGoogle Scholar
  198. Ward, BM, Moss, B (2001) Vaccinia virus intracellular movement is associated with microtubules and independent of actin tails. J Virol 75:11651–63CrossRefPubMedGoogle Scholar
  199. Welch, MD, Mullins, RD (2002) Cellular control of actin nucleation. Annu Rev Cell Dev Biol 18:247–88CrossRefPubMedGoogle Scholar
  200. Wilk, T, Gowen, B, Fuller, SD (1999) Actin associates with the nucleocapsid domain of the human immunodeficiency virus Gag polyprotein. J Virol 73:1931–40PubMedGoogle Scholar
  201. Willard, M (2002) Rapid directional translocations in virus replication. J Virol 76:5220–5232CrossRefPubMedGoogle Scholar
  202. Xu, Y, Takeda, S, Nakata, T, Noda, Y, Tanaka, Y, Hirokawa, N (2002) Role of KIFC3 motor protein in Golgi positioning and integration. J Cell Biol 158:293–303CrossRefPubMedGoogle Scholar
  203. Ye, GJ, Vaughan, KT, Vallee, RB, Roizman, B (2000) The herpes simplex virus 1 U(L)34 protein interacts with a cytoplasmic dynein intermediate chain and targets nuclear membrane. J Virol 74:1355–63CrossRefPubMedGoogle Scholar
  204. Young, A, Dictenberg, JB, Purohit, A, Tuft, R, Doxsey, SJ (2000) Cytoplasmic dyneinmediated assembly of pericentrin and gamma tubulin onto centrosomes. Mol Biol Cell 11:2047–56PubMedGoogle Scholar
  205. Zhang, J, Campbell, RE, Ting, AY, Tsien, RY (2002) Creating new fluorescent probes for cell biology. Nat Rev Mol Cell Biol 3:906–18CrossRefPubMedGoogle Scholar
  206. Zhou, ZH, Chen, DH, Jakana, J, Rixon, FJ, Chiu, W (1999) Visualization of tegument-capsid interactions and DNA in intact herpes simplex virus type 1 virions. J Virol 73:3210–8PubMedGoogle Scholar
  207. Ziegelbauer, J, Shan, B, Yager, D, Larabell, C, Hoffmann, B, Tjian, R (2001) Transcription factor MIZ-1 is regulated via microtubule association. Mol Cell 8:339–49CrossRefPubMedGoogle Scholar
  208. Zigmond, SH (1993) Recent quantitative studies of actin filament turnover during cell locomotion. Cell Motil Cytoskeleton 25:309–16CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • K. Döhner
    • 1
  • B. Sodeik
    • 1
  1. 1.Department of Virology, OE 5320Hannover Medical SchoolHannoverGermany

Personalised recommendations