A process-oriented approach to compute THM problems in porous media - Part 1: Theoretical and informatics background

  • Olaf Kolditz
  • Wenqing Wang
  • Joëlle de Jonge
  • Mingliang Xie
  • Sebastian Bauer
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 94)


Object-oriented (OO) methods become more and more important in order to meet scientific computing challenges, such as the treatment of coupled non-linear multi-field problems with extremely high resolutions. This two-part paper introduces an object-oriented concept for numerical modelling multi-process systems in porous media (Part 1). The C++ implementation of the OO design for process objects (PCS) as a class is described and illustrated with several applications. Due to the importance of the encapsulation of processes as individual PCS objects we denote our concept as an processoriented approach. The presented examples (Part 2) are dealing with thermal (T), hydraulic (H), mechanical (M) and componental processes (C) in bentonite materials, which are used as buDer material for the isolation of hazardous waste in geologic barriers. In particular, we are interested in coupling phenomena such as thermally induced desaturation, non-isothermal consolidation, swelling/shrinking phenomena as well as in a better understanding of the coupled, non-linear THM system.


Porous Medium Processoriented Approach Geothermal System Geothermal Reservoir Steam Injection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. E. E. Alonso, A. Gens, and D. W. Hight. Special problem soils: general report. In Proc. 9th European Conf. on Soil Mechanics and Foundation Engineering, volume 3, Rotterdam, 1987. Balkema.Google Scholar
  2. M. A. Biot. General theory of three-dimensional consolidation. J. Appl. Phys., 12: 155–164, 1941.MATHCrossRefGoogle Scholar
  3. G. S. Bodvarsson and C. F. Tsang. Injection and thermal breakthrough in fractured geothermal reservoirs. J. Geophys. Res., 87(B2):1031–1048, 1982.Google Scholar
  4. L. Börgesson. Water flow and swelling pressure in non-saturated bentonite-based clay barriers. Engineering Geology, 314:229–237, 1985.CrossRefGoogle Scholar
  5. M. Borsetto, D. Cricci, T. Hueckel, and A. Peano. On numerical models for the analysis of nuclear waste disposal in geologic clay formations. In R. W. Lewis, editor, Numerical Methods for Transient and Coupled Problems, Swansea, 1984. Pineridge Press.Google Scholar
  6. H. Class. Theorie und numerische Modellierung nichtisothermer Mehrphasenprozesse in NAPL-kontaminierten porösen Medien. Dissertation, TU Braunschweig, 2000.Google Scholar
  7. M. Emmert. Numerische Modellierung nichtisothermer Gas-Wasser Systeme in porösen Medien. PhD thesis, Insitut für Wasserbau, Universität Stuttgart, 1997.Google Scholar
  8. R. W. Falta, K. Pruess, I. Javandel, and P. A. Witherspoon. Numerical modeling of steam injection for the removal of nonaqueous phase liquids from the subsurface-2. code validation and application. Water Resources Research, 28(2):451–465, February 1992a.CrossRefGoogle Scholar
  9. R. W. Falta, K. Pruess, I. Javandel, and P. A. Witherspoon. Numerical modeling of steam injection for the removal of nonaqueous phase liquids from the subsurface-1. numerical formulation. Water Resources Research, 28(2):433–449, February 1992b.CrossRefGoogle Scholar
  10. D. Gawin, P. Baggio, and B. A. Schrefler. Coupled heat, water and gas flow in deformable porous media. Int. J. Num. Meth. Fluids, 20:969–987, 1995.CrossRefMATHGoogle Scholar
  11. A. Gens, A. J. Garcia-Molina, S. Olivella, E. E. Alonso, and F. Huertas. Analysis of a full scale in-situ test simulating repository conditions. Int. J. Anal. Num. Meth. Geomech., 22:515–548, 1998.CrossRefMATHGoogle Scholar
  12. M. Geraminegad and S. K. Saxena. A coupled thermoelastic model for saturated-unsaturated porous media. Géotechnique, 36:539–550, 1986.Google Scholar
  13. R. Helmig. Multiphase Flow and Transport Processes in the Subsurface. Springer, Berlin, 1997.Google Scholar
  14. L. Jing, O. Stephansson, L. Börgesson, M. Chijimatzu, F. Kautsky, and C.-F. Tsang. Decovalex ii project technical report-task 2c. Ski report 99:23. issn 1104-1374, DECOVALEX team, 1999.Google Scholar
  15. T. Kanno, T. Fujita, H. Ishikawa, K. Hara, and M. Nakano. Coupled thermo-hydromechanical modelling of bentonite buffer material. Int. J. Numer. Anal. Meth. Geomech., 23:1281–1307, 1999.CrossRefMATHGoogle Scholar
  16. M. Kohlmeier, R. Kaiser, O. Kolditz, and W. Zielke. Finite element simulation of consolidation and bentonite swelling in the framework of unsaturated porous media. In: Developments in Water Science, 47:57–64, 2002.Google Scholar
  17. O. Kolditz. Non-linear flow in fractured rock. Int. J. Numer. Methods for Heat & Fluid Flow, 11(6):547–575, 2001.MATHCrossRefGoogle Scholar
  18. O. Kolditz. Computational methods in environmental fluid mechanics. Springer Science Publisher, Berlin-New York-Tokyo, 2002.MATHGoogle Scholar
  19. O. Kolditz and S. Bauer. A process-oriented approach to compute multi-field problems in porous media. submitted to Hydroinformatics, 2003.Google Scholar
  20. O, Kolditz, J. de Jonge, M. Beinhorn, M. Xie, T. Kalbacher, W. Wang, S. Bauer, C. McDermott, R. Kaiser, and M. Kohlmeier. ROCKFLOW-Theory and users manual, release 3.9 (in preparation). Groundwater modeling group, Center for Applied Geosciences, University of Tuebingen, Institute of Fluid Mechanics, University of Hannover, 2003.Google Scholar
  21. R. W. Lewis, P. J. Roberts, and B. A. Schrefler. Finite element modelling of two-phase heat and fluid flow in deforming porous media. Transport in Porous Media, 4:319–334, 1989.CrossRefGoogle Scholar
  22. R. W. Lewis and B. A. Schrefler. The finite element method in the static and dynamic deformation and consolidation of porous media. Wiley, 1998.Google Scholar
  23. M. J. Lippmann, T. N. Narasimham, and P. A. Witherspoon. Numerical simulation of reservoir compaction in liquid-dominated geothermal systems. In Proc. 2nd Int. Symposium Land Subsidence, pages 179–189. IAHS, 1976.Google Scholar
  24. S. Olivella, J. Carrera, A. Gens, and E. E. Alonso. Nonisothermal multiphase flow of brine and gas through saline media. Transport in Porous Media, 15:271–293, 1994.CrossRefGoogle Scholar
  25. S. Olivella and A. Gens. Vapour transport in low permeability unsaturated soil with capillary effects. Transport in Porous Media, 40:219–241, 2000.CrossRefGoogle Scholar
  26. K. Pruess. Modeling of geothermal reservoirs: Fundamental processes, computer simulations and field applications. Geothermics, 19(1):3–15, 1990.CrossRefGoogle Scholar
  27. K. Pruess and T.N. Narasimhan. On fluid reserves and the production of super-heated steam from fractured, vapor-dominated geothermal reservoirs. J. Geophys. Res., 87(B11):9329–9339, 1982.Google Scholar
  28. K. Pruess and T.N. Narasimhan. A practical method for modeling fluid and heat flow in fractured porous media. Society of Petroleum Engineers Journal, 25(1): 14–26, 1985.CrossRefGoogle Scholar
  29. J. Rutqvist, L. Börgesson, M. Chijimatsu, A. Kobayashi, L. Jing, T. S. Nguyen, J. Noorishad, and C.-F. Tsang. Thermodynamics of partially saturated geologic media: governing equations and formulation of four finite element models. International Journal of Rock Mechanics & Mining Sciences, 38:105–127, 2001.CrossRefGoogle Scholar
  30. J. Studer, W. Ammann, P. Meier, Ch Müller, and E. Glauser. Verfüllen und Versiegeln von Stollen, Schächten und Bohrlöchern. Technischer Bericht 84-33, Nagra, Baden, Schweiz, 1984.Google Scholar
  31. K. Terzaghi. Erdbaumechanik auf bodenphysikalischer Grundlage. Deuticke, Wien, 1925.MATHGoogle Scholar
  32. S. Tripathy and T. Schanz. A re-examination of swelling pressure of compacted bentonites from gouy-chapman diffusive double layer theory. In De Gennaro and Delage, editors, Int Workshop of Young Doctors in Geomechanics-W(H)YDOC 02, pages 17–19. Ecole Nationale des Ponts et Chaussees, 2002.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Olaf Kolditz
    • 1
  • Wenqing Wang
    • 1
  • Joëlle de Jonge
    • 1
  • Mingliang Xie
    • 1
  • Sebastian Bauer
    • 1
  1. 1.Center for Applied Geosciences, Geohydrology/HydroInformaticsUniversity of TübingenGermany

Personalised recommendations