Strain localisation simulation in non-isothermal multiphase geomaterials

  • Lorenzo Sanavia
  • Francesco Pesavento
  • Bernhard A. Schrefler
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 94)

6 Conclusions

A coupled finite element formulation for the hydro-thermo-mechanical behaviour of a water saturated and partially saturated porous material has been presented. This model is obtained as a result of a research in progress on the thermo-hydro-mechanical modelling for multiphase geomaterials undergoing inelastic strains. Numerical results of strain localisation in globally undrained samples of dense and medium dense sands have been presented. Vapour pressure below the saturation water pressure (i.e. water cavitation) develops at localisation in case of dense sands, as experimentally observed. A case of strain localisation induced by a thermal load in a sample where the displacements are constrained and evaporation takes place is also analysed.


Shear Band Capillary Pressure Relative Permeability Dense Sand Latent Heat Transfer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lewis R.W, Schrefler B.A (1998) The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media. John WileyGoogle Scholar
  2. 2.
    Schrefler B.A (2002) Appl Mech Rev 55:351–388CrossRefGoogle Scholar
  3. 3.
    Mokni M, Desrues J (1998) Mech Cohes-Frict Mater 4: 419–441CrossRefGoogle Scholar
  4. 4.
    Vardoulakis J, Sulem J. (1995) Bifurcation Analysis in Geomechanics, Blakie Academic and Professional, LondonGoogle Scholar
  5. 5.
    Schrefler B.A, Sanavia L, Majorana C.E (1996) Mech Cohes-Frict Mater 1:95–114CrossRefGoogle Scholar
  6. 6.
    Diebels S, Ehlers W, Ellsiepen P, Volk W (1998) On the regularization of shear band phenomena in liquid-saturated and empty Soils. In: Proc. Euromech Colloquium 378 on Nonlocal Aspects in Solid Mechanics, University of Mulhouse, Brillard A, Ganghoffer J F (eds) 58–63Google Scholar
  7. 7.
    Zhang H.W, Sanavia L, Schrefler B.A (1999) Mech Cohes-Frict Mater 4:443–460CrossRefGoogle Scholar
  8. 8.
    Zhang H.W, Schrefler B.A (2000) Eur J Mech A/Solids 19:503–524CrossRefGoogle Scholar
  9. 9.
    Gawin D., Sanavia L, Schrefler B.A (1998) Int J Num Methods in Fluids 27:109–125CrossRefMATHGoogle Scholar
  10. 10.
    Schrefler B.A, Sanavia L, Gawin D (1998) Modelling of strain localisation in fully saturated soils. In: Adachi T, Oka F, Yashima A. (eds) Balkema RotterdamGoogle Scholar
  11. 11.
    Hassanizadeh M, Gray W.G (1979) Adv Water Res 2:1–14Google Scholar
  12. 12.
    Hassanizadeh M, Gray W.G (1979) Adv Water Res 2:17–29Google Scholar
  13. 13.
    Hassanizadeh M, Gray W.G (1980) Adv Water Res 3:30–45CrossRefGoogle Scholar
  14. 14.
    Gray W.G, Hassanizadeh M (1991) Water Resources Res 27, 8:1855–1863CrossRefGoogle Scholar
  15. 15.
    Gawin D, Schrefler B.A (1996) Engineering Computations, 13, 7:113–143CrossRefMATHGoogle Scholar
  16. 16.
    Hofstetter G, Taylor R.L (1990) Comm Appl Num Meth Engrg 6:583–589CrossRefMATHGoogle Scholar
  17. 17.
    Sanavia L, Schrefler B. A, Steinmann P (2002) Computational Mechanics, 28:137–151CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Lorenzo Sanavia
    • 1
  • Francesco Pesavento
    • 1
  • Bernhard A. Schrefler
    • 1
  1. 1.Department of Structural and Transportation EngineeringUniversity of PaduaPadovaItaly

Personalised recommendations