Numerical simulation of air loss during tunnel advance in compressed air tunnelling

  • Y. Scheid
  • S. Semprich
  • A. Chinkulkijniwat
Part of the Springer Proceedings in Physics book series (SPPHY, volume 94)


In shallow tunnelling below the groundwater table compressed air can be used for preventing water inflow into the tunnel. Using this method air loss takes place through both the unsupported tunnel face and shrinkage cracks of the shotcrete lining. Until today it is difficult to correctly estimate the amount of air loss during the design phase of a project, although this is a significant factor concerning the total costs of a tunnel. For solving the problem the multi-phase flow in the soil above the tunnel has to be considered. The aim of the conducted research project was to develop a numerical simulation of the air flow in the soil, based on existing unsaturated soil constitutive models. In the first stage large scale laboratory tests were conducted at the Institute for Soil Mechanics and Foundation Engineering in Graz to simulate the air-permeability of the shotcrete lining and the soil. Additionally, the experimental results were simulated numerically. In a second stage the numerical model was extended to a three dimensional simulation of tunnel advance under compressed air. In this contribution the results of the tunnel advance model with respect to the air flow into the soil through the cracked shotcrete lining and the tunnel face are presented and discussed.


Tunnel Face Shotcrete Lining Tunnel Advance Unsupported Tunnel Large Scale Laboratory Test 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. van Genuchten, M. Th. (1980) A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Science Soc. of America, Vol. 44, No. 5, 892–898.Google Scholar
  2. Gülzow, H. G.(1994) Dreidimensionale Berechnung des Zweiphasenströmungsfeldes beim Tunnelvortrieb unter Druckluft in wassergesättigten Böden, Veröffentlichungen des Instituts für Grundbau, Bodenmechanik, Felsmechanik und Verkehrswasserbau der RWTH Aachen, 25.Google Scholar
  3. Hochgürtel, T. (1998) Numerische Untersuchungen zur Beurteilung der Standsicherheit der Ortsbrust beim Einsatz von Druckluft zur Wasserhaltung im schildvorgetriebenen Tunnelbau, Veröffentlichungen des Instituts für Grundbau, Bodenmechanik, Felsmechanik und Verkehrswasserbau der RWTH Aachen,32.Google Scholar
  4. Javadi, A.A., and Snee, C.P.M. (2002) Numerical Modeling of Air Losses in Compressed Air Tunneling, The international Journal of Geotechnics, 2(4), 399–417.CrossRefGoogle Scholar
  5. Kammerer, G. (2000) Experimentelle Untersuchungen von Strömungsvorgängen in teilgesättigten Böden und Spritzbetonrissen im Hinblick auf den Einsatz von Druckluft im Tunnelbau, Mitteilungshefte der Gruppe Geotechnik Graz, Technische Universität Graz, 8.Google Scholar
  6. Mualem, Y. (1976) A New Model for Predicting the Hydraulic Conductivity of Unsaturated Porous Media. Water Resources Research, Vol. 12, No. 3, 513–522.Google Scholar
  7. Oettl, G., Stark, R.F., and Hofstetter G. (2002) Numerical Simulation of Dewatering of Soils by Means of Compressed Air, Proc. 2nd Int. Conf. Soil Structure Interaction in Urban Civil Engineering, Zurich, Switzerland, 411–418.Google Scholar
  8. Pruess, K., Oldenburg, C., and Moridis, G. (1999) TOUGH2 User’s Guide, Version 2.0, Report LBNL-43134, Lawrence Berkeley National Laboratory, Berkeley, USA.Google Scholar
  9. Perau, E. (1999) Flow of Water and Air in Soils due to Tunnelling under Compressed Air, Geotechnical Engineering for Transportation Infrastructure, Proc. 12th Europ. Conf. Soil Mechanics Geotechnical Engineering, 3, 2093–2099.Google Scholar
  10. Scheid, Y. (2000) Die TDR-Methode zur Bestimmung des Sättigungsgrades teilgesättigter Böden, Unsaturated Soils, Proc. 2nd Workshop, Bauhaus-University Weimar, 4, 35–55.Google Scholar
  11. Scheid, Y, and Semprich, S. (2002) Simulation of a Laboratory Test to Analyse Two-phase Flow in Compressed Air Tunnelling, Unsaturated Soils, Proc. 4th Workshop, Bauhaus-University Weimar, 8, 51–58.Google Scholar
  12. Scheid, Y., Semprich, S., and Chinkulkijniwat, A. (2003) Computation of Laboratory Test Results to Estimate the Loss of Air in Compressed Air Tunnelling, Proc. TOUGH Symposium 2003, ScheidSemprichChinkulkijniwat.pdfGoogle Scholar
  13. Semprich, S., and Scheid, Y. (2002) Messprogramm für experimentelle Untersuchungen zum Tunnelbau unter Druckluft nach NATM, Messen in der Geotechnik 2002, Proc. Institute for Foundation Engineering and Soil Mechanics, Braunschweig University of Technology, 68, 303–320.Google Scholar
  14. Verma, A.K., Pruess, K., Tsang, C.F., and Witherspoon, P.A. (1985) A Study of Two-phase Concurrent Flow of Stream and Water in An Unconsolidated Porous Media, Proc. 23rd National Heat Transfer Conf., American Society of Mechanical Engineers, Denver, CO, 135–143, 1985.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Y. Scheid
    • 1
    • 2
  • S. Semprich
    • 1
  • A. Chinkulkijniwat
    • 1
  1. 1.Institute for Soil Mechanics and Foundation EngineeringGraz University of TechnologyAustria
  2. 2.Lahmeyer International GmbHGermany

Personalised recommendations