Advertisement

Grading entropy variation due to soil crushing

  • J. Lörincz
  • M. Gálos
  • K. Rajkai
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 94)

Abstract

The statistical grading entropy of soils S (Lörincz, 1986) consists of two terms: the base entropy S 0 arising from the difference in the width of the statistical cells in the conventional grading curve and, the entropy increment ΔS due to the mixing of the fractions. The aim of this ongoing research is to examine which part of the entropy plays the role of the “true” entropy in thermodynamic sense (i.e. undergoes an increase during irreversible thermodynamic processes).

Keywords

Fluid Dynamics Ongoing Research Statistical Cell Thermodynamic Process Statistical Grade 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Breuer, H. (1993) dtv-Atlas zur Physik. Springer Hungarica.Google Scholar
  2. Imre, E. (1995). Characterization of dispersive and piping soils. Proc. XI. ECSMFE, Copenhagen, 2. 49–55.Google Scholar
  3. Imre, E; Rajkai, K, Genovese, R, Jommi, C, Aradi, L, Telekes, G. (2003): Soil water-retention curve for fractions and mixtures. Proc. of UNSAT-ASIA, Osaka (accepted)Google Scholar
  4. Lörincz, J (1986). Grading entropy of soils. Doctoral Thesis, Technical Sciences, TU of Budapest.Google Scholar
  5. Lörincz, J (1990). Relationship between grading entropy and dry bulk density of granular soils. Periodica Politechnica 34:3:255–265.Google Scholar
  6. Lörincz, J (1993a). On granular filters with the help of grading entropy. Filters in Geotechnical and Hydr.Eng. Brauns, Hheibaum, Schuler, BALKEMA, 67–69.Google Scholar
  7. Lörincz, J (1993b). On particle migration with the help of grading entropy. Filters in Geotechnical and Hydr.Eng. Brauns,Hheibaum, Schuler, BALKEMA, 63–65.Google Scholar
  8. Luciano A. Oldecop (2000) “Compresibilidad de escolleras. Influencia de la humedad”. Ph.D. Thesis. Universitat Politčcnica de Catalunya.Google Scholar
  9. McDowell, G.R. and Bolton, M.D. (1998). On the micro mechanics of crushable aggregates. Géotechnique 48, No. 5, 667–679Google Scholar
  10. McDowell, G.R. and Bolton, M.D. (2000). Effect of particle size distribution on pile tip resistance in calcareous sand in the geotechnical centrifuge. Granular Matter 2, No. 4, 179–187CrossRefGoogle Scholar
  11. McDowell, G.R. & Daniell, C.M. (2001). Fractal compression of soil. Géotechnique 51, No. 2, 173–176.Google Scholar
  12. Nakata, Y. Hyde, F.L. Hyodo, M. Murata, H (1999). A probabilistic approach to sand particle crushing in the triaxial test. Geotechniques 45.5:567–583.Google Scholar
  13. Oldecop, L A; Alonso, E E. (2001). A model for rockfill compressibility. Geotechnique, Vol. 51, No. 2Google Scholar
  14. Palmer, A. C., Sanderson, T. J. O. (1991). Fractal crushing of ice and brittle solids. Procc. R. Soc.Lond. A 433: 469–477.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • J. Lörincz
    • 1
  • M. Gálos
    • 2
  • K. Rajkai
    • 3
  1. 1.Gradex, Budapest, Hungary E. Imre, Q. P. Trang, G. TelekesGeotechnical Research Group of the Budapest Univ. of TechnHungary
  2. 2.Department of Const. Mat. and Eng. GeologyBudapest Univ. of Techn.Hungary
  3. 3.Institute for Soil Science and Agric. Chemistry, Hungarian Academy of SciencesHungary

Personalised recommendations