Water permeability of unsaturated compacted kaolin

  • N. Peroni
  • E. Fratalocchi
  • A. Tarantino
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 93)


The paper presents an experimental investigation into the permeability of compacted kaolin. Tests were performed in a suction-controlled oedometer using the air overpressure technique: ambient air pressure (raised above the atmospheric pressure) was kept constant and pore water pressure was modified. Permeability was measured by monitoring water inflow in response to a suction decrease and interpolating experimental data using a simplified solution of Richards’ equation (unsteady-state method). Corrections were made to account for the impedance of the high air-entry ceramic disc, the water lost by evaporation into the air pressure line and the air diffusing through the ceramic. The experimental results have shown that axis-translation technique may be problematic at high degrees of saturation and that permeability can be significantly underestimated.


Pore Water Pressure Unsaturated Soil Matric Suction Gravimetric Water Content Oedometer Test 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brooks, R.H. & Corey, A.T. (1964) “Hydraulic properties of porous media” Colorado State University Hydrology Paper, n. 3.Google Scholar
  2. Carman P. C.(1956) “Flow of gases through porous media” Academic Press, New YorkGoogle Scholar
  3. Chiu, T. F. & Shackelford, C. D. (1998) “Unsaturated Hydraulic Conductivity of Compacted Sand-Kaolin Mixtures”, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 124, n. 2, pp. 160–1Google Scholar
  4. Di Mariano, A. (2000) “Le argille a scaglia ed il ruolo della suzione sulla loro deformabilità”, PhD Thesis, Università di Catania di Palermo, ItalyGoogle Scholar
  5. Fredlund, D.G. & Rahardjo, H. (1993) “Soil mechanics for unsaturated soil” John Wiley & Sons, Inc. New York.Google Scholar
  6. Gardner, W.R. (1956) “Calculation of capillary conductivity from pressure plate outflow data” Soil Science Soc. Am. Proc. 20, pp. 317–320.Google Scholar
  7. Gardner, W.R. (1958) “Some steady state solutions of the unsaturated moisture flow equation with application to evaportion from a water table” Soil Science, 85(4), pp. 228–232.Google Scholar
  8. Gens, A. & Romero, E. (2000) “Ensayos de Laboratorio” Simposio sobre Geotecnica de las Infraestructuras del Trasporte, Barcellona, 27–29 June 2000Google Scholar
  9. Jucà, J.F.T. & Frydman, S. (1996) “Experimental techniques. States of the art report. ” In Proceeding 1st International Conference on Unsaturated Soils, Paris. E.E. Alonso and P. Delage (eds.), Balkema / Presses des Ponts et Chaussées, 3: 1257–1292.Google Scholar
  10. Kozeny J. (1927). “Ueber kapillare leitung des wassers im boden”, Akad. Wiss., Wien, n.2a, 136.Google Scholar
  11. Kunze, R.J. & Kirkham, D. (1962) “Simplified accounting for membrane impedance in capillary conductivity determination”, Soil Science Soc. Am. Proc., 26, pp. 421–426.Google Scholar
  12. Mazzieri, F., Van Impe, W. (2001) “Influence of preparation procedures on properties of compacted kaolin”, Proceedings XVth International Conference on Soil Mechanics and Geotechnical Engineering, Istanbul, 27–31 August 2001, Balkema, RotterdGoogle Scholar
  13. Mitchell, J.K. (1992) “Fundamentals of soil behavior”, John Wiley & Sons, New York.Google Scholar
  14. Miller, E.E. & Elrick, D.E. (1958) “Dynamic determination of capillary conductivity extended for non-negligible membrane”. Soil Science Soc. Am. Proc., 22, pp. 483–486Google Scholar
  15. Mualem Y. (1976) “A new model for predicting the hydraulic conductivity of unsaturated porous media”, Water Resour. Res., 12Google Scholar
  16. Peroni, N. (2002) “Contributo allo studio delle proprieta idrauliche e della deformabilita di un terreno insaturo” PhD Thesis, Università degli Studi di Ancona, ItalyGoogle Scholar
  17. Richards, L.A. (1952) “Water conducting and retaining properties of soils in relation to irrigation” In Proceeding of an International Symposium on Desert Research, Jerusalem, pp.523–546.Google Scholar
  18. Romero, E. (1999) “Characterisation and thermo-hydromechanical behaviour of unsaturated Boom Clay: an experimental study”, PhD Thesis, Universitat Politecnica de CatalunyaGoogle Scholar
  19. Van Genuchten, M. Th, (1980) “A closed-formequation for predicting the hydraulic conductivity of unsaturated soils”, Soil Science Soc. Am. J. 44, pp. 892–898.Google Scholar
  20. Vanapalli, S.K. & Lobbezoo J.P., (2002) “A normalized function for predicting the coefficient of per meability of unsaturated soils” 3rd International Conference on Unsaturated Soils, Recife, Brazil,200Google Scholar
  21. Vicol, T. (1990) “Comportment hydraulique et mecanique d’un sol fin non saturé. Application à la modélisation”, PhD Thesis, Ecole Nationale des Ponts et Chaussées, Paris.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • N. Peroni
    • 1
  • E. Fratalocchi
    • 2
  • A. Tarantino
    • 3
  1. 1.Dipartimento di Fisica e Ingegneria dei Materiali e del TerritorioUniversità Politecnica delle MarcheAnconaItaly
  2. 2.Dipartimento di Fisica e Ingegneria dei Materiali e del TerritorioUniversità Politecnica delle MarcheAnconaItaly
  3. 3.Dipartimento di Ingegneria Meccanica e StrutturaleUniversità degli Studi di TrentoTrentoItaly

Personalised recommendations