Advertisement

Tensile Strength of Compacted Clays

  • G. Heibrock
  • R. M. Zeh
  • K. J. Witt
Part of the Springer Proceedings in Physics book series (SPPHY, volume 93)

Synopsis

The paper presents experimental results linking matric suction and tensile strength of compacted clays. Test results from a cohesive soil are presented and discussed with respect to the soil structure and the interaction of soil and water. It is assumed that two main groups of pores can be clearly identified in compacted clays; the pores between aggregates (interaggregate pores) and pores between particles (intraaggregate pores ). Based on a description of soil-water-interaction an expected behaviour, describing tensile strength as a function of matric suction, is derived and compared with the experimental results. The laboratory test results indicate that there is a strong correlation between the pore size distribution (assessed by interpretation of the soil water characteristic curve SWCC) and the tensile strength of compacted soils. Furthermore, the test results are compared by using micro-mechanical considerations of the interaction between the skeleton of unsaturated soils (interparticle contact force) and by using numerical calculations with an elastic relationship.

Keywords

Tensile Strength Pore Size Distribution Grain Size Distribution Fine Grained Soil Kaolin Clay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alonso, E. E., Gens E., Josa, A. 1990. A constitutive model for partially saturated soils. Géotechnique 40, No. 4, pp. 405–430Google Scholar
  2. Brüggemann, R. 1998. Zugfestigkeit verdichteter Tone als Funktion des Wassergehalts. Diplomarbeit. Institut für Grundbau und Bodenmechanik, Ruhr-Universität Bochum. unveröffentlichtGoogle Scholar
  3. Durner, W. 1991. Vorhersage der hydraulischen Leitfähigkeit strukturierter Böden. Diss., Bayreuther Bodenkundliche Berichte, Band 20Google Scholar
  4. Endell, K. 1941. Stand der Erkenntnisse über die Quellfähigkeit von Tonen, ihre innere Ursache und Bestimmung, Bautechnik, Heft 19, BerlinGoogle Scholar
  5. Heibrock, G. 1996. Zur Rissbildung durch Austrocknung in mineralischen Abdichtungsschichten an der Basis von Deponien. Schriftenreihe des Instituts für Grundbau an der Ruhr-Universität Bochum, Heft 26Google Scholar
  6. Heibrock, G. 1997. Desiccation cracking of mineral sealing liners. in: Proceedings Sardinia 1997, 6. International Waste Management and Landfill Symposium, CISA, CagliariGoogle Scholar
  7. Jasmund, K., Lagaly, G. 1993. Tonminerale und Tone: Struktur, Eigenschaften Anwendungen in Industrie und Umgebung. Stenkopff, DarmstadtGoogle Scholar
  8. Mitchell, J. K. 1993. Fundamentals of Soil Behaviour. J. Wiley & Sons, LondonGoogle Scholar
  9. Molenkamp, F., Nazemi, A. H. 2003. Interactions between two rough spheres, water bridge and water vapour. Géotechnique 53, No. 2, pp. 255–264Google Scholar
  10. Nagaraj, T. et al. 1990. Discussion on « Change in pore size distribution due to consolidation of clays » by Griffith and Joshi, Géotechnique, Vol. 40 No. 2Google Scholar
  11. Nagaraj, T., Murthy, S. 1986. A Critical reappraisal of compression index equations. Géotechnique 36, No. 1, pp. 27–32.Google Scholar
  12. Rumpf, H., Schubert, H. 1978. Adhesion forces in agglomeration processes. in Onada & Hench: Ceramic processing before firing, J. Wiley a. Sons, Inc., LondonGoogle Scholar
  13. Schubert, K. 1982. Kapillarität in porösen Feststoffsystemen. Springer Verlag, HeidelbergGoogle Scholar
  14. Snyder, V. A., Miller, R. D. 1985. Tensile strength of unsaturated soils. Soil Sci. Soc. Am. J., Vol. 49: 58–65Google Scholar
  15. Stoffregen, H. 1997. Bodeuntersuchungen an Kaolin. Fachgebiet der Bodenkunde und Regionale Bodenkunde, Institut für Ökologie, TU BerlinGoogle Scholar
  16. Thomas, H. R., Cleall, P. J., Seetharam, S. C. 2002. Numerical modelling of the thermal-hydraulic-chemical-mechanical behaviour of unsaturated clay. Environmental Geomechanics. Monte Verità, pp. 125–136Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • G. Heibrock
    • 1
  • R. M. Zeh
    • 2
  • K. J. Witt
    • 2
  1. 1.PHi ConsultMarburgGermany
  2. 2.Professorship of Foundation EngineeringBauhaus-University WeimarGermany

Personalised recommendations