Advertisement

Decay of Disturbances in Turbulent Pipe Flow

  • Klaus Gersten
  • Heinz-Dieter Papenfuss

Keywords

Reynolds Number Wall Shear Stress Friction Factor Ring Vortex Longitudinal Vortex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barbin AR, Jones JB (1963) Turbulent flow in the inlet region of a smooth pipe. J. Basic Eng. 85:29–34Google Scholar
  2. Cebeci T, Chang KC (1978) A general method for calculating momentum and heat transfer in laminar and turbulent duct flows. Numerical Heat Transfer 1:39–68Google Scholar
  3. Gersten K, Herwig H (1992) Strömungsmechanik. Grundlagen der Impuls-, Wärme-und Stoffübertragung aus asymptotischer Sicht. Vieweg-Verlag, Braunschweig/WiesbadenGoogle Scholar
  4. Gersten K, Klika M (1998) The decay of three-dimensional deviations from the fully developed state in laminar pipe flow. In: Rath HJ, Egbers Ch. (Eds.): Advances in Fluid Mechanics and Turbomachinery, Springer-Verlag, Berlin/Heidelberg, pp. 17–28Google Scholar
  5. Gersten K, Merzkirch W, Wildemann C (2001) Verfahren und Vorrichtung zur Korrektur fehlerhafter Messwerte von Durchflussmessgeräten infolge gestörter Zuströmung. Patent No. 197 24 116Google Scholar
  6. Herwig H, Voigt M (1995) Turbulent entrance flow in a channel: an asymptotic approach. In: Bois PA et al. (Eds.): Asymptotic Modelling in Fluid Mechanics, Springer-Verlag, Berlin/Heidelberg/New York, pp. 51–58Google Scholar
  7. Kalkühler K (1998) Experimente zur Entwicklung der Geschwindigkeitsprofile und Turbulenzgrößen hinter verschiedenen Gleichrichtern. Fortschritt-Berichte, Reihe 7, Nr. 339, VDI-Verlag, DüsseldorfGoogle Scholar
  8. Kitoh O (1991) Experimental study of turbulent swirling flow in a straight pipe. J. Fluid Mech. 225:445–479CrossRefGoogle Scholar
  9. Klein A (1981) REVIEW: Turbulent developing pipe flow. J. Fluids Eng. 103:243–249CrossRefGoogle Scholar
  10. Laws EM, Lim EH, Livesey JL (1987) Momentum balance in highly distorted turbulent pipe flow. Exp. in Fluids 5:36–42Google Scholar
  11. McKeon BJ, Morrison JF, Jiang W, Li J, Smits AJ (2003) Revised log-law constants for fully-developed turbulent pipe flow. In: AJ Smits (Ed.): IUTAM Symposium on Reynolds Number Scaling in Turbulent Flow. Kluwer Academic Publishers, DordrechtGoogle Scholar
  12. Mickan B (1999): Systematische Analyse von Installationseffekten sowie der Effizienz von Strömungsgleichrichtern in der Großgasmengenmessung. Doctor thesis, University EssenGoogle Scholar
  13. Morrison GL, Tung K (1999) The effect of pipe wall roughness upon the flow field downstream of two close coupled 90° out of plane elbows. Proceedings 4th International Symposium on Fluid Flow Measurement, Denver, Colorado, June 27–30, 1999Google Scholar
  14. Norman RS, Mattingly GE, Mc Faddin SE (1989) The decay of swirl in pipes. Proceedings Intern. Gas Research Conference, 312–321Google Scholar
  15. Parchen RR (1993) Decay of swirl in turbulent pipe flows. Ph. D. thesis, Technical University EindhovenGoogle Scholar
  16. Reader-Harris MJ (1994) The decay of swirl in a pipe. Int. J. Heat and Fluid Flow 15:212–217CrossRefGoogle Scholar
  17. Senoo Y, Nagata T (1972) Swirl flow in long pipes with different roughness. Bulletin of the JSME, 15:1514–1521Google Scholar
  18. Schlichting H, Gersten K (2000) Boundary-Layer Theory. Springer-Verlag, Berlin / HeidelbergMATHGoogle Scholar
  19. Steenbergen W (1995) Turbulent pipe flow with swirl. Ph. D. thesis, Technical University EindhovenGoogle Scholar
  20. Steenbergen W, Voskamp J (1998) The rate of decay of swirl in turbulent pipe flow. Flow Meas. Instrum. 9:67–78CrossRefGoogle Scholar
  21. Sudo K, Sumida M, Hibara H (1998) Experimental investigation of turbulent flow in a circular-sectioned 90-degree bend. Exp. in Fluids 25:42–49CrossRefGoogle Scholar
  22. Voigt M (1995) Die Entwicklung von Geschwindigkeits-und Temperaturfeldern in laminaren und turbulenten Kanal-und Rohrströmungen aus asymptotischer Sicht. VDI-Fortschritt-Berichte, Reihe 7, Nr. 262, VDI-Verlag, DüsseldorfGoogle Scholar
  23. Wildemann C (2000) Ein System zur automatischen Korrektur der Messabweichung von Durchflussmessgeräten bei gestörter Anströmung. Doctor thesis, Universität Essen. See also: Fortschritt-Berichte VDI, Reihe 8, Nr. 868Google Scholar
  24. Wildemann C, Merzkirch W, Gersten K (2002) A universal, nonintrusive method for correcting the reading of a flow meter in pipe flow disturbed by installation effects. J. of Fluids Eng. 124:650–656CrossRefGoogle Scholar
  25. Zagarola MV, Smits AJ (1998) Mean-flow scaling of turbulent pipe flow. J. Fluid Mech. 373, 33–79CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Klaus Gersten
    • 1
  • Heinz-Dieter Papenfuss
    • 1
  1. 1.Institut für Thermo- und FluiddynamikRuhr-Universität BochumBochumGermany

Personalised recommendations