Fully Developed Turbulent Pipe Flow

  • Klaus Gersten


Reynolds Number Velocity Distribution Wall Shear Stress Friction Factor Core Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Acharya M, Bornstein J, Escudier MP (1986) Turbulent boundary layers on rough surfaces. Experiments in Fluids 4:33–47CrossRefGoogle Scholar
  2. Afzal N (1976) Millikan's argument at moderately large Reynolds number. Phys. Fluids 19:600–602CrossRefGoogle Scholar
  3. Afzal N (2001): Power law and log law velocity profiles in fully developed turbulent pipe flow: equivalent relations at large Reynolds numbers. Acta Mechanica, Vol. 151:171–183CrossRefMATHGoogle Scholar
  4. Afzal N, Yajnik K (1973) Analysis of turbulent pipe and channel flows at moderately large Reynolds number. J. Fluid Mech. 61:23–31CrossRefGoogle Scholar
  5. AGARD (1998) A selection of test cases for the validation of large-eddy simulations of turbulent flows. AGARD Advisory Report 345Google Scholar
  6. Barenblatt GI (1993) Scaling laws for fully developed turbulent shear flows. Part I: Basic hypothesis and analysis. J. Fluid Mech. 248:513–520CrossRefMATHMathSciNetGoogle Scholar
  7. Barenblatt GI, Chorin AJ (1998) Scaling of the intermediate region in wall-bounded turbulence: The power law. Phys. Fluids, Vol. 10:1043–1044CrossRefMathSciNetMATHGoogle Scholar
  8. Barenblatt GI, Chorin AJ, Prostokishin VM (1997a) Scaling laws for fully developed turbulent flow in pipes. Appl. Mech. Rev., Vol. 50:413–429CrossRefGoogle Scholar
  9. Barenblatt GI, Chorin AJ, Prostokishin VM (1997b): Scaling laws for fully developed turbulent flow in pipes: Discussion of experimental data. Proc. Natl. Acad. Sci. USA, Vol. 94, 773CrossRefMATHGoogle Scholar
  10. Benedict RP (1980) Fundamentals of Pipe Flow. John Wiley Sons, New YorkGoogle Scholar
  11. Blasius H (1913) Das Ähnlichkeitsgesetz bei Reibungsvorgängen in Flüssigkeiten. Forschg. Arb. Ing.-Wesen, Heft 131, BerlinGoogle Scholar
  12. Boussinesq J (1872) Essai sur la theorie des eaux courantes. Memoires Acad. des Sciences, Vol. 13, No. 1, ParisGoogle Scholar
  13. Bradshaw P (2000) A note on “critical roughness height” and “transitional roughness”. Phys. Fluids 12:1611–1614CrossRefMathSciNetMATHGoogle Scholar
  14. Churchill SW (2001) Turbulent flow and convection: the prediction of turbulent flow and convection in a round tube. In: Advances in Heat Transfer, Academic Press, San Diego, Vol. 34:255–361Google Scholar
  15. Colebrook CF (1938/1939) Turbulent flow in pipes with particular references to the transition region between the smooth and the rough pipe laws. J. Inst. Civil Eng., London, 11:133–156 and 12:393–422Google Scholar
  16. Colebrook CF, White CM (1937) Experiments with fluid friction in roughened pipes. Proc. Royal Soc., London, Series A 161:367–381Google Scholar
  17. den Toonder JMJ (1995) Drag reduction by polymer additives in a turbulent pipe flow: Laboratory and numerical results. Ph. D. thesis, Delft University of TechnologyGoogle Scholar
  18. Durst F, Jovanovic J, Sender J (1995) LDA measurements in the near-wall region of a turbulent pipe flow. J. Fluid Mech. 295:305–335CrossRefGoogle Scholar
  19. Gersten K, Herwig H (1992) Strömungsmechanik-Grundlagen der Impuls-, Wärme-und Stoffübertragung aus asymptotischer Sicht. Vieweg-Verlag, Braunschweig, WiesbadenGoogle Scholar
  20. Gersten K, Papenfuss HD, Kurschat T, Genillon P, Fernández Pérez F, Revell N (2000) New transmission-factor formula proposed for gas pipelines. Oil & Gas Journal, February 14Google Scholar
  21. Grigson CWB (1984) Nikuradse's experiment. AIAA Journal 22:999–1001Google Scholar
  22. Kestin J, Richardson PD (1963) Heat transfer across turbulent incompressible boundary layers. Int. J. Heat Mass Transfer 6:147–189. Also: Forsch. Ing.-Wesen 29:93–104CrossRefGoogle Scholar
  23. McKeon BJ, Li J, Jiang W, Morrison JF, Smits A (2003a) Pitot probe corrections in fully-developed turbulent pipe flow. Meas. Sci. Technol. 14:1449–1458CrossRefGoogle Scholar
  24. McKeon BJ, Morrison JF, Jiang W, Li J, Smits AJ (2003b) Revised log-law constants for fully-developed turbulent pipe flow. In: AJ Smits (Ed.): IUTAM Symposium on Reynolds Number Scaling in Turbulent Flow. Kluwer Academic Publishers, DordrechtGoogle Scholar
  25. McKeon BJ, Li J, Jiang W, Morrison JF, Smits AJ (2004): Further observations on the mean velocity in fully-developed pipe flow. J. Fluid Mech. 501:135–147CrossRefMATHGoogle Scholar
  26. Nikuradse J (1932) Gesetzmäßigkeiten der turbulenten Strömung in glatten Rohren. VDI-Forsch. Arb. Ing.-WesenGoogle Scholar
  27. Nikuradse J (1933) Strömungsgesetze in rauhen Rohren. VDI-Forsch.-Heft 361; VDI-Verlag, BerlinGoogle Scholar
  28. Revell N (1998) Internal Report of BG Technology, PR 091Google Scholar
  29. Reichardt H (1951) Vollständige Darstellung der turbulenten Geschwindigkeitsverteilung in glatten Leitungen. Z. angew. Math. Mech. 31:203–219Google Scholar
  30. Rotta JC (1956) Experimenteller Beitrag zur Entstehung turbulenter Strömung im Rohr. Ing. Arch. 24:258–281CrossRefGoogle Scholar
  31. Schlichting H, Gersten K (2000) Boundary-Layer Theory. Springer-Verlag, Berlin, Heidelberg; 8th Edition, Corrected Printing 2003MATHGoogle Scholar
  32. Schultz MP (2002) The relationship between frictional resistance and roughness for surfaces smoothed by sanding. J. Fluids Eng. 124:492–499CrossRefGoogle Scholar
  33. Speidel L (1962) Determination of the necessary surface quality and possible losses due to roughness in steam turbines. Elektrizitätswirtschaft 61:799–804Google Scholar
  34. Uhl AE (1965) Steady flow in gas pipelines. American Gas Association. Technical Report No. 10Google Scholar
  35. Van Dyke M (1975) Perturbation Methods in Fluid Mechanics. The Parabolic Press, Stanford, CaliforniaMATHGoogle Scholar
  36. von Kármán Th (1930) Mechanische Ähnlichkeit und Turbulenz. Nachr. Ges. Wiss. Göttingen. Math. Phys. Klasse: 58–76 und Verhandlg. des III. Intern. Kongresses für Techn. Mechanik, Stockholm, Teil I:85–93Google Scholar
  37. Waigh DR, Kind RJ (1998) Improved aerodynamic characterization of regular three-dimensional roughness. AIAA J. 36: 1117–1119CrossRefGoogle Scholar
  38. Wosnik M, Castillo L, George WK (2000) A theory for turbulent pipe and channel flows. J. Fluid Mech. 421:115–145CrossRefMATHGoogle Scholar
  39. Zagarola MW, Smits AJ (1998) Mean-flow scaling of turbulent pipe flow. J. Fluid Mech. 373:33–79CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Klaus Gersten
    • 1
  1. 1.Institut für Thermo- und FluiddynamikRuhr-Universität BochumBochumGermany

Personalised recommendations