Determination of Parameters of the Atmosphere and the Surface in a Clear Atmosphere


Phase Function Ocean Physics Solar Irradiance Surface Albedo Applied Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson GP, Clough SA, Kneizys FX et al. (1996) AFGL atmospheric constituent profiles (0–120 km). Environmental Research Paper 954, Air Force Geophysics Laboratory, Hanscom, MassachusettsGoogle Scholar
  2. Badaev VV, Malkevitch MS (1978) The possibility of obtaining vertical profiles of aerosol extinction by satellite observations of reflected radiation within the band O2 0.76 µ. Izv Acad Sc USSR, Atmosphere and Ocean Physics 14:1022–1030 (Bilingual)Google Scholar
  3. Barteneva OD, Dovgyallo EN, Polyakova EA (1967) Experimental studies of optical properties of ground layer of the atmosphere. Main Geophysical Observatory Studies 220 (in Russian)Google Scholar
  4. Barteneva OD, Laktionova AG, Adnashkin VN, Veselova LK (1978) Phase functions of light scattering in the ground layer above the Ocean. In: Atmospheric Physics Problems, Leningrad University Press, Leningrad, Vol. 15, pp 27–43 (in Russian)Google Scholar
  5. Bass AM, Paur RJ (1984) The ultraviolet cross-section of ozone. In: Zerofs CS, Chazi AP (eds) The measurements of atmospheric ozone. Reidel, Dordrecht, pp 606–610Google Scholar
  6. Biryulina MS (1981) Modeling of a priori ensemble of the inverse problem solution and stability of optimal planes of the ozone satellite experiment. Meteorology Hydrology 4:45–51 (in Russian)Google Scholar
  7. Borovin GK, Komarov MM, Yaroshevsky VS (1987) Errors-traps by programming in Fortran. Nauka, Moscow (in Russian)Google Scholar
  8. Dmokhovsky VI, Ivlev LS, Ivanov VN (1972) Airborne observations of the vertical structure of atmospheric aerosols according to the CAENEX program. In: Main geophysical observatory studies, 276, pp 37–42 (in Russian)Google Scholar
  9. Gorchakov GI, Isakov AA (1974) Halo phase functions of the gaze. Izv. RAS, Atmosphere and Ocean Physics 10:504–511 (Bilingual)Google Scholar
  10. Gorchakov GI, Isakov AA, Sviridenkov MA (1976) Statistical links between scattering coefficient and coefficient of the directional light scattering in the angle ranges 0.5–165°. Izv. Acad. Sci USSR, Atmosphere and Ocean Physics 12:1261–1268 (Bilingual)Google Scholar
  11. Hudson JG, Yonghong X (1999) Vertical distributions of cloud condensation nuclei spectra over the summertime northeast Pacific and Atlantic Oceans. J Geophysical Res 104(D23):30219–30229CrossRefGoogle Scholar
  12. Ivlev LS, Vasilyev AV (1998) Refined interpretation of the spectral behavior of optical thickness and residual atmospheric absorption in the short-wavelength region of spectrum. SPIE, Vol. 3583, pp 35–38CrossRefGoogle Scholar
  13. Kneizis FX, Robertson PC, Abreu LW et al. (1996) The Modtran 2/3. Report and Lowtran 7 model. Phillips Laboratory, Hanscom, MassachusettsGoogle Scholar
  14. Kondratyev KYa, Timofeyev YuM (1970) Thermal sounding of the atmosphere from satellites. Gydrometeoizdat, Leningrad (in Russian)Google Scholar
  15. Kondratyev KYa, Ter-Markaryants NE (eds) (1976) Complex radiation experiment. Gydrometeoizdat, Leningrad (in Russian)Google Scholar
  16. Kondratyev KYa, Buznikov AA, Vasilyev OB et al. (1971) Certain results of combined complex under satellite geophysical experiment. Doklady Acad. Sci. USSR, Ser. Mathematics and Physics 196:1333–1336 (in Russian)Google Scholar
  17. Kondratyev KYa, Buznikov AA, Vasilyev OB, Smoktiy OI (1977) Atmosphere influence on albedo by aero-cosmic survey of the Earth in visual spectral region. Izv. Acad. Sci USSR, Atmosphere and Ocean Physics 13:471–478 (Bilingual)Google Scholar
  18. Krekov GM, Rakhimov RF (1986) Optical models of atmospheric aerosols. Tomsk Department of Siberian Branch Acad Sci USSR Press, Tomsk (in Russian)Google Scholar
  19. Krekov GM, Zvenigorodsky SG (1990) Optical model of the middle atmosphere. Nauka, Novosibirsk (in Russian)Google Scholar
  20. Lenoble J (ed) (1985) Radiative transfer in scattering and absorbing atmospheres: standard computational procedures. A. DEEPAK Publishing, Hampton, VirginiaGoogle Scholar
  21. Marchuk GI, Mikhailov GA, Nazaraliev NA et al. (1980) The Monte-Carlo method in the atmosphere optics. Springer-Verlag, New YorkGoogle Scholar
  22. Minin IN (1988) The theory of radiation transfer in the planets atmospheres. Nauka, Moscow (in Russian)Google Scholar
  23. Otnes RK, Enochson L (1978) Applied Time-Series Analysis. Toronto. Wiley, New YorkGoogle Scholar
  24. Pokrovsky AG (1967) The methodology of calculation of spectral absorption of the infrared radiation in the atmosphere. In: Atmospheric Physics Problems, Iss.5. Leningrad, Leningrad University Press, pp 85–110 (in Russian)Google Scholar
  25. Polyakov AV, Timofeyev YuM, Poberovsky AV, Vasilyev AV (2001) Retrieval of vertical profiles of coefficient of the aerosol extinction in the stratosphere by results of observations with instruments “Ozone-Mir” (DOS Mir). Izv. RAS, ser. Atmosphere and Ocean Physics 37:213–222 (Bilingual)Google Scholar
  26. Rozanov VV, Timofeyev YuM, Barrows JP (1995) The information content of observations of outgoing UV, visual and near infrared solar radiation (instruments GOME). Earth Observations and Remote Sensing 6:29–39 (Bilingual)Google Scholar
  27. Rudich Y, Talukder RK, Ravishankara AR (1998) Multiphase chemistry of NO3 in the remote troposphere. J Geophys Res 103(D13):16133–16143CrossRefGoogle Scholar
  28. Timofeyev YuM, Vasilyev AV, Rozanov VV (1995) Information content of the spectral measurements of the 0.76 µm O2 outgoing radiation with respect to the vertical aerosol properties. Advances of Space Research 16:91–94 (Bilingual)CrossRefGoogle Scholar
  29. Tvorogov SD (1994) Certain aspects of the problem of the function presentation by the exponent series. Atmosphere and Ocean Optics 7:793–798 (Bilingual)Google Scholar
  30. Vasilyev AV (1996) “Vertical” is the collection of gas models of the Earth atmosphere. In: The Herald of the St. Petersburg University. Ser. 4, Physics, Chemistry 4:87–90 (in Russian)Google Scholar
  31. Vasilyev AV, Ivlev LS (1995) Numerical modeling of optical characteristics of poly-disperse spherical particles. Atmosphere and Ocean Optics 8:921–928 (Bilingual)Google Scholar
  32. Vasilyev AV, Ivlev LS (1996) Numerical modeling of spectral aerosol phase function of the light scattering. Atmosphere and Ocean Optics 9:129–133 (Bilingual)Google Scholar
  33. Vasilyev AV, Ivlev LS (1999) Determination of parameters of gas and aerosol composition of the atmosphere by airborne observations of spectral irradiance. In: Ivlev LS (ed) Natural and anthropogenic aerosols, Collection of articles, St. Petersburg. Chemistry Institute, St. Petersburg University Press, pp 97–103 (in Russian)Google Scholar
  34. Vasilyev AV, Ivlev LS (2000) Optical statistical model of the atmosphere for the region of Ladoga Lake. Atmosphere and Ocean Optics 13:198–203 (Bilingual)Google Scholar
  35. Vasilyev AV, Rozanov VV, Timofeyev YuM (1998) The analysis of the informative content of observations of outgoing reflected and diffused solar radiation within the spectral region 240–700 nm. Earth Observations and Remote Sensing 2:51–58 (Bilingual)Google Scholar
  36. Vasilyev OB, Vasilyev AV (1989) Information content of obtaining optical parameters of atmospheric layers by observations spectral irradiances at different levels in the atmosphere. I. Problem statement and results of calculations for the separate layer. Atmosphere and Ocean Optics 2:428–433 (Bilingual)Google Scholar
  37. Vasilyev OB, Vasilyev AV (1989) Information content of obtaining optical parameters of atmospheric layers by observations spectral irradiances at different levels in the atmosphere. II. Estimation of the informatic content of observations in the multi-layer atmosphere. Atmosphere and Ocean Optics 2:433–437 (Bilingual)Google Scholar
  38. Vasilyev OB, Vasilyev AV (1994a) Information content of obtaining optical parameters of atmospheric layers by observations spectral irradiances at different levels in the atmosphere. III. Obtaining optical parameters of layers in the inhomogeneous multilayer atmosphere (numerical experiment). Atmosphere and Ocean Optics 7:625–632 (Bilingual)Google Scholar
  39. Vasilyev OB, Vasilyev AV (1994b) Two-parametric model of the phase function. Atmosphere and Ocean Optics 7:76–89 (Bilingual)Google Scholar
  40. Vasilyev OB, Contreras AL, Velazques AM et al. (1995) Spectral optical properties of the polluted atmosphere of Mexico City (spring-summer 1992). J Geophysical Res 100:D12, 26027–26044CrossRefGoogle Scholar
  41. Virolainen YaA, Polyakov AV (1999) The algorithm of the direct calculation of transmission functions in problems of ground remote sounding of the atmosphere. In: The Herald of the St. Petersburg University, ser. 4, Physics, Chem 1:25–31 (in Russian)Google Scholar
  42. Weaver A, Solomon S, Sanders RW, Arpag K, Muller HL Jr (1996) Atmospheric NO3 offaxis measurements at sunrise: estimates of tropospheric NO3 at 40°N. J Geophys Res 101(D13):18605–18612CrossRefGoogle Scholar
  43. Zuev BE, Komarov VS (1986) Statistical models of temperature and gaseous components of the atmosphere. (Contemporary problems of the atmospheric optics, vol. 1). Gydrometeoizdat, Leningrad (in Russian)Google Scholar
  44. Zuev VE, Naats IE (1990) Inverse problems of the atmospheric optics. (Contemporary problems of the atmospheric optics, vol. 7). Gydrometeoizdat, Leningrad (in Russian)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Personalised recommendations