The Concept of Wavefront-Guided Corneal Surgery

  • Li Wang
  • Douglas D. Koch
Part of the Essentials in Ophthalmology book series (ESSENTIALS)


Point Spread Function Modulation Transfer Function Wavefront Aberration Optical Transfer Function Zernike Polynomial 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Applegate RA, Thibos LN, Hilmantel G (2001) Optics of aberroscopy and super vision. J Cataract Refract Surg 27:1093–1107PubMedCrossRefGoogle Scholar
  2. 2.
    Applegate RA, Marsack JD, Ramos R, Sarver EJ (2003) Interaction between aberrations to improve or reduce visual performance. J Cataract Refract Surg 29:1487–1495PubMedCrossRefGoogle Scholar
  3. 3.
    Cheng X, Thibos LN (2003) The ultimate challenge: converting wavefront aberration maps to visual quality. Review of refractive surgery, pp 15–18Google Scholar
  4. 4.
    Cheng X, Himebaugh NL, Kollbaum PS, Thibos LN, Bradley A (2003) Validation of a clinical Shack-Hartmann aberrometer. Optom Vis Sci 80:587–595PubMedGoogle Scholar
  5. 5.
    Cheng X, Himebaugh NL, Kollbaum PS, Thibos LN, Bradley A (2004) Test-retest reliability of clinical Shack-Hartmann measurements. Invest Ophthalmol Vis Sci 45:351–360PubMedGoogle Scholar
  6. 6.
    Guirao A, Porter J, Williams DR, Cox IG (2002) Calculated impact of higher-order monochromatic aberrations on retinal image quality in a population of human eyes. J Opt Soc Am A Opt Image Sci Vis 19:620–628PubMedGoogle Scholar
  7. 7.
    Hament WJ, Nabar VA, Nuijts RM (2002) Repeatability and validity of Zywave aberrometer measurements. J Cataract Refract Surg 28:2135–2141PubMedCrossRefGoogle Scholar
  8. 8.
    He JC, Burns SA, Marcos S (2000) Monochromatic aberrations in the accommodated human eye. Vision Res 40:41–48PubMedGoogle Scholar
  9. 9.
    Liang J, Williams DR, Miller DT (1997) Supernormal vision and high-resolution retinal imaging through adaptive optics. J Opt Soc Am A 14:2884–2892Google Scholar
  10. 10.
    MacRae S, Fujieda M (2000) Slit skiascopic-guided ablation using the Nidek laser. J Refract Surg 16: S576–580PubMedGoogle Scholar
  11. 11.
    McLellan JS, Marcos S, Burns SA (2001) Age-related changes in monochromatic wave aberrations of the human eye. Invest Ophthalmol Vis Sci 42:1390–1395PubMedGoogle Scholar
  12. 12.
    McLellan JS, Marcos S, Prieto PM, Burns SA (2002) Imperfect optics may be the eye’s defence against chromatic blur. Nature 417:174–176PubMedCrossRefGoogle Scholar
  13. 13.
    Mirshahi A, Bühren J, Gerhardt D, Kohnen T (2003) In-vivo and in-vitro repeatability of Hartmann-Shack aberrometry. J Cataract Refract Surg 29:2295–2301PubMedGoogle Scholar
  14. 14.
    Molebny VV, Panagopoulou SI, Molebny SV, Wakil YS, Pallikaris IG (2000) Principles of ray tracing aberrometry. J Refract Surg 16:S572–575PubMedGoogle Scholar
  15. 15.
    Mrochen M, Kaemmerer M, Mierdel P, Krinke HE, Seiler T (2000) Principles of Tscherning aberrometry. J Refract Surg 16:S570–571PubMedGoogle Scholar
  16. 16.
    Nagy ZZ, Palagyi-Deak I, Kelemen E, Kovacs A (2002) Wavefront-guided photorefractive keratectomy for myopia and myopic astigmatism. J Refract Surg 18:S615–619PubMedGoogle Scholar
  17. 17.
    Nagy ZZ, Palagyi-Deak I, Kovacs A, Kelemen E, Forster W (2002) First results with wavefront-guided photorefractive keratectomy for hyperopia. J Refract Surg 18:S620–623PubMedGoogle Scholar
  18. 18.
    Ninomiya S, Fujikado T, Kuroda T, Maeda N, Tano Y, Oshika T, Hirohara Y, Mihashi T (2002) Changes of ocular aberration with accommodation. Am J Ophthalmol 134:924–926PubMedCrossRefGoogle Scholar
  19. 19.
    Pallikaris IG, Panagopoulou SI, Molebny VV (2000) Clinical experience with the Tracey technology wavefront device. J Refract Surg 16:S588–591PubMedGoogle Scholar
  20. 20.
    Pallikaris IG, Kymionis GD, Panagopoulou SI, Siganos CS, Theodorakis MA, Pallikaris AI (2002) Induced optical aberrations following formation of a laser in situ keratomileusis flap. J Cataract Refract Surg 28:1737–1741PubMedGoogle Scholar
  21. 21.
    Phusitphoykai N, Tungsiripat T, Siriboonkoom J, Vongthongsri A (2003) Comparison of conventional versus wavefront-guided laser in situ keratomileusis in the same patient. J Refract Surg 19[Suppl 2]:S217–220PubMedGoogle Scholar
  22. 22.
    Porter J, Guirao A, Cox IG, Williams DR (2001) Monochromatic aberrations of the human eye in a large population. J Opt Soc Am A Opt Image Sci Vis 18:1793–1803PubMedGoogle Scholar
  23. 23.
    Porter J, MacRae S, Yoon G, Roberts C, Cox IG, Williams DR (2003) Separate effects of the microkeratome incision and laser ablation on the eye’s wave aberration. Am J Ophthalmol 136: 327–337PubMedCrossRefGoogle Scholar
  24. 24.
    Salmon TO, West RW, Gasser W, Kenmore T (2003) Measurement of refractive errors in young myopes using the COAS Shack-Hartmann aberrometer. Optom Vis Sci 80:6–14PubMedGoogle Scholar
  25. 25.
    Smirnov MS (1962) Measurement of the wave aberration of the human eye. Biophysics 7:766–795Google Scholar
  26. 26.
    Smolek MK, Klyce SD (2003) Zernike polynomial fitting fails to represent all visually significant corneal aberrations. Invest Ophthalmol Vis Sci 44:4676–4681PubMedCrossRefGoogle Scholar
  27. 27.
    Thibos LN (2000) Principles of Hartmann-Shack aberrometry. J Refract Surg 16:S563–565PubMedGoogle Scholar
  28. 28.
    Thibos LN, Applegate RA, Schwiegerling JT, Webb R et al. (2001) Standards for reporting the optical aberrations of eyes. In: MacRae SM, Krueger RR, Applegate RA (eds) Customized corneal ablation, the quest for supervision. Slack Inc., Thorofare, NJ, pp 348–361Google Scholar
  29. 29.
    Wang L, Koch DD (2003) Ocular higher-order aberrations in individuals screened for refractive surgery. J Cataract Refract Surg 29:1896–1903PubMedGoogle Scholar
  30. 30.
    Wang L, Wang N, Koch DD (2003) Evaluation of refractive error measurements of the Wavescan Wavefront system and the Tracey Wavefront aberrometer. J Cataract Refract Surg 29:970–979PubMedGoogle Scholar
  31. 31.
    Webb RH, Penney CM, Thompson KP (1992) Measurement of ocular wavefront distortion with a spatially resolved refractometer. Applied Optics 31:3678–3686Google Scholar
  32. 32.
    Williams DR (1985) Visibility of interference fringes near the resolution limit. J Opt Soc Am A 2:1087–1093PubMedCrossRefGoogle Scholar
  33. 33.
    Williams DR, Coletta NJ (1987) Cone spacing and the visual resolution limit. J Opt Soc Am A 14:1514–1523Google Scholar
  34. 34.
    Zernike F (1934) Beugungstheorie des Schneidenverfahrens und seiner verbesserten Form, der Phasenkontrastmethode. Physica I:689–704Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Li Wang
    • 1
  • Douglas D. Koch
    • 2
  1. 1.Cullen Eye InstituteBaylor College of MedicineHoustonUSA
  2. 2.Baylor College of MedicineHoustonUSA

Personalised recommendations