Quantum Phenomena Within a New Theory of Time

  • Avshalom C. Elitzur
  • Shahar Dolev
Part of the The Frontiers Collection book series (FRONTCOLL)


Black Hole Hide Variable Quantum Phenomenon Entropy Increase Advance Action 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C.J. Isham and J.C. Polkinghorne: The debate over the block universe. In: Quantum Cosmology and the Laws of Nature, ed. by R. Russell, N. Murphy, and C.J. Isham (University of Notre Dame Press, Notre Dame, IN, 1996) pp. 139–147Google Scholar
  2. 2.
    H. Atmanspacher and E. Ruhnau (Eds.): Time, Temporality, Now (Springer, Berlin, 1997)MATHGoogle Scholar
  3. 3.
    H.D. Zeh: The Physical Basis of the Direction of Time (Springer, Berlin, 1989)Google Scholar
  4. 4.
    D. Bohm: The Special Theory of Relativity (Routledge, London, 1965, 1996)MATHCrossRefGoogle Scholar
  5. 5.
    R. Penrose: Singularities and time-asymmetry. In: General relativity: An Einstein Centenary Survey, ed. by S.W. Hawking and W. Israel (Cambridge University Press, Cambridge, 1979) p. 581Google Scholar
  6. 6.
    P.C.W. Davies: The Physics of Time Asymmetry (Surrey University Press, London, 1974)Google Scholar
  7. 7.
    O.M. Bilaniuk, V.K. Deshpande, and E.G.C. Sudarshan: ’Meta’ relativity. Am. J. Phys. 30, 718–723 (1962)CrossRefMathSciNetADSGoogle Scholar
  8. 8.
    H. Price: Time’s Arrow and Archimedes’ Point (Oxford University Press, Oxford, 1996)Google Scholar
  9. 9.
    D.Z. Albert: Time and Chance (Harvard University Press, Cambridge, MA., 2000)MATHGoogle Scholar
  10. 10.
    A.C. Elitzur and S. Dolev: Black hole evaporation entails an objective passage of time. Found. Phys. Lett. 12, 309–323 (1999)CrossRefMathSciNetGoogle Scholar
  11. 11.
    A.C. Elitzur and S. Dolev: Black hole uncertainty entails an intrinsic time arrow. Phys. Lett. A 251, 89–94 (1999)CrossRefADSMathSciNetMATHGoogle Scholar
  12. 12.
    S. Hawking: The information paradox for black holes. In: 17th International Conference on General Relativity and Gravitation (to be published 2004)Google Scholar
  13. 13.
    W. Heisenberg: Über den anschaulichen inhalt der quantentheoretischen kinematik und mechanik. Z. Phys. 43, 172–198 (1927); translated as: The physical content of quantum kinematics and mechanics, in: [43], pp. 62-84MATHADSCrossRefGoogle Scholar
  14. 14.
    J.S. Bell: On the Einstein-Podolsky-Rosen paradox. Physics, 1, 195–780 (1964)Google Scholar
  15. 15.
    A.C. Elitzur: Anything beyond the uncertainty? Reflections on the interpretations of quantum mechanics. Unpublished (1995)Google Scholar
  16. 16.
    A.C. Elitzur: Locality and indeterminism preserve the second law. Phys. Lett. A 167, 335–340 (1992)CrossRefADSMathSciNetGoogle Scholar
  17. 17.
    A. Valentini: Signal-locality in hidden-variables theories. Phys. Lett. A 297, 273–278 (2002)CrossRefADSMATHMathSciNetGoogle Scholar
  18. 18.
    A. Valentini: Subquantum information and computation. Pramana J. Phys. 59, 269–277 (2002)ADSCrossRefGoogle Scholar
  19. 19.
    J.D. Bekenste in: Generalized second law of thermodynamics in black hole physics. Phys. Rev. D 9, 3292 (1974)ADSCrossRefGoogle Scholar
  20. 20.
    S.W. Hawking: Black hole explosions. Nature 248, 30 (1974)CrossRefADSGoogle Scholar
  21. 21.
    S.W. Hawking: Particle creation by black holes. Commun. Math. Phys. 49, 199 (1975)MathSciNetADSCrossRefGoogle Scholar
  22. 22.
    W.G. Unruh: Notes on black-hole evaporation. Phys. Rev. D 14, 870–892 (1976)ADSCrossRefGoogle Scholar
  23. 23.
    Y. Aharonov, P.G. Bergman, and J.L. Lebowitz: Time symmetry in the quantum process of measurement. Phys. Rev. 134, 1410–1416 (1964)ADSCrossRefGoogle Scholar
  24. 24.
    J.G. Cramer: The transactional interpretation of quantum mechanics. Rev. Mod. Phys. 58, 647–688 (1986)CrossRefADSMathSciNetGoogle Scholar
  25. 25.
    R. Kastner: Cramer’s transactional interpretation and causal loop problems (2004)Google Scholar
  26. 26.
    A.C. Elitzur: On some neglected thermodynamic peculiarities of quantum non-locality. Found. Phys. Lett. 3, 525–541 (1990)CrossRefGoogle Scholar
  27. 27.
    A.C. Elitzur and L. Vaidman: Quantum mechanical interaction-free measurements. Found. of Phys. 23, 987–997 (1993)CrossRefADSGoogle Scholar
  28. 28.
    P. Kwiat, H. Weinfurter, T. Herzog, A. Zeilinger, and M.A. Kasevich: Interaction-free measurement. Phys. Rev. Lett. 74, 4763–4766 (1995)CrossRefADSPubMedGoogle Scholar
  29. 29.
    L. Hardy: On the existence of empty waves in quantum theory. Phys. Lett. A 167, 11–16 (1992)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    L. Hardy: Nonlocality for two particles without inequalities for almost all entangled states. Phys. Rev. Lett. 71, 1665–1668 (1993)CrossRefADSPubMedMATHMathSciNetGoogle Scholar
  31. 31.
    L. Hardy: Nonlocality of a single photon revisited. Phys. Rev. Lett. 73, 2279–2283 (1994)CrossRefADSPubMedGoogle Scholar
  32. 32.
    S. Dolev and A.C. Elitzur: Non-sequential behavior of the wave function. quant-ph/0012091 (2000)Google Scholar
  33. 33.
    J.A. Wheeler: The ‘past’ and the ‘delayed-choice’ double-slit experiment. In: Mathematical Foundations of Quantum Theory, ed. by A.R. Marrow (Academic Press, New York, 1978) pp. 9–48Google Scholar
  34. 34.
    A.C. Elitzur, S. Dolev, and A. Zeilinger: Time-reversed EPR and the choice of histories in quantum mechanics. To be published in the Proceedings of XXII Solvay Conference in Physics, Special Issue, Quantum Computers and Computing (2002)Google Scholar
  35. 35.
    A. Aspect, J. Dalibard, and G. Roger: Experimental test of Bell’s inequalities using time-varying analyzers. Phys. Rev. Lett. 49, 1804–1807 (1982)ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    A. Aspect and P. Grangier: Experiments on Einstein-Podolsky-Rosen-type correlations with pairs of visible photons. In: Quantum Concepts in Space and Time, ed. by R. Penrose and C.J. Isham (Oxford University Press, Oxford, 1986) pp. 1–15Google Scholar
  37. 37.
    W. Tittel, H. Brendel, J. Zbinden, and N. Gisin: Violation of Bell inequalities by photons more than 10 km apart. Phys. Rev. Lett. 81, 3563–3566 (1998)CrossRefADSGoogle Scholar
  38. 38.
    M.A. Rowe, D. Kielpinski, V. Meyer, C.A. Sackett, W.M. Itano, C. Monroe, and D.J. Wineland: Experimental violation of a Bell’s inequality with efficient detection. Nature 409, 791–794 (2001)CrossRefADSPubMedGoogle Scholar
  39. 39.
    A.C. Elitzur and S. Dolev: Is there more to t Why time’s description in modern physics is still incomplete. In: The Nature of Time: Geometry, Physics and Perception, NATO Science Series, II: Mathematics, Physics and Chemistry, ed. by R. Buccheri, M. Saniga, and W.M. Stuckey (Kluwer Academic, New York, 2003) pp. 297–306Google Scholar
  40. 40.
    Y. Aharonov and L. Vaidman: Properties of a quantum system during the time interval between two measurements. Phys. Rev. A 41, 11–20 (1990)CrossRefADSPubMedMathSciNetGoogle Scholar
  41. 41.
    D. Rohrlich, Y. Aharonov, S. Popescu, and L. Vaidman: Negative kinetic energy between past and future state vectors. Ann. N.Y. Acad. Sci. 755, 394–404 (1995)ADSCrossRefGoogle Scholar
  42. 42.
    L. S. Feuer: Einstein and the Generation of Science (Basic Books, New York, 1974)Google Scholar
  43. 43.
    J.A. Wheeler and W.H. Zurek (Eds.): Quantum Theory and Measurement (Princeton University Press, Princeton, 1983)Google Scholar

Copyright information

© Center for Frontier Sciences 2005

Authors and Affiliations

  • Avshalom C. Elitzur
  • Shahar Dolev

There are no affiliations available

Personalised recommendations