What is Probability?

  • Simon Saunders
Part of the The Frontiers Collection book series (FRONTCOLL)


Subjective Probability Classical Statistical Mechanic Quantum Game Born Rule Subjective Expectation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bell, J.S.: On the problem of hidden variables in quantum theory, Rev. Mod. Phys. 38, 447–52 (1966), reprinted in [3]CrossRefADSMATHGoogle Scholar
  2. 2.
    Bell, J.S.: Quantum mechanics for cosmologists. In: C. Isham, R. Penrose, and D. Sciama (Eds.), Quantum Gravity 2, Clarendon Press, Oxford (1981) pp. 611–637Google Scholar
  3. 3.
    Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics, Cambridge University Press, Cambridge (1987)Google Scholar
  4. 4.
    de Finetti, B.: Theory of Probability, John Wiley and Sons, New York (1974)MATHGoogle Scholar
  5. 5.
    Deutsch, D.: Quantum theory of probability and decisions, Proc. Roy. Soc. London A 455, 3129–3137, (1999); available online at http://xxxx.arXiv.org/abs/quant-ph/9906015ADSMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Dowker, F., and Kent, A.: On the consistent histories approach to quantum mechanics, J. Stat. Phys. 82, 1575–646 (1995)MathSciNetCrossRefADSGoogle Scholar
  7. 7.
    Gell-Mann, M., and Hartle, J.: Quantum mechanics in the light of cosmology. In: W. Zurek (Ed.), Complexity, Entropy, and the Physics of Information, Addison-Wesley, Reading (1990)Google Scholar
  8. 8.
    Gleason, A.: Measures on the closed subspaces of a Hilbert space, J. Math. Mech. 6, 885–894 (1967)MathSciNetGoogle Scholar
  9. 9.
    Ghirardi, G.C., P. Pearle, and Rimini, A.: Markov processes in Hilbert space and continuous spontaneous localization of systems of identical particles, Phys. Rev. A 42, 78–89 (1990)ADSPubMedMathSciNetCrossRefGoogle Scholar
  10. 10.
    Holland, P.: The Quantum Theory of Motion, Cambridge University Press, Cambridge (1993)CrossRefGoogle Scholar
  11. 11.
    Lewis, D.: A subjectivist’s guide to objective chance. In: R.C. Jeffries (Ed.) Studies in Inductive Logic and Probability, Vol. 2, University of California Press, (1980); reprinted in Philosophical Papers, Vol. 2, Oxford University Press, Oxford (1986)Google Scholar
  12. 12.
    Parfit, D.: Reasons and Persons, Oxford University Press, Oxford (1984)Google Scholar
  13. 13.
    Popper, K.: Philosophy of science: A personal report. In: C.A. Mace (Ed.), British Philosophy in the Mid-Century, Allen and Unwin, London, pp. 153–91 (1957); reprinted in K. Popper: Conjectures and Refutations, Routledge and Kegan Paul, London, pp. 33-96 (1963)Google Scholar
  14. 14.
    Rorty, A. (Ed.): The Identities of Persons, University of California Press, Berkeley (1976)Google Scholar
  15. 15.
    Saunders, S.: Derivation of the Born rule from operational assumptions, Proc. Roy. Soc. London A 460, 1–18 (2004), available online at http://xxxx.arXiv.org/abs/quant-ph/02MathSciNetCrossRefGoogle Scholar
  16. 16.
    Saunders, S.: Time, quantum mechanics, and decoherence, Synthese 102, 235–66 (1995)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Saunders, S.: Time, quantum mechanics, and probability, Synthese 114, 373–404 (1998); available online at http://xxxx.arXiv.org/abs/quant-ph/01CrossRefMathSciNetGoogle Scholar
  18. 18.
    Valentini, A.: Hidden variables, statistical mechanics, and the early universe. In: J. Bricmont, D. Dürr, M.C. Galavotti, G. Ghirardi, F. Petruccione, N. Zanghi (Eds.), Chance in Physics: Foundations and Perspectives, Springer-Verlag (2001), available online at http://xxxx.arXiv.org/abs/quant-ph/0104067Google Scholar
  19. 19.
    von Neumann, J., and Morgenstern, O.: Theory of Games and Economic Behaviour, 2nd edn., Princeton University Press, Princeton (1947)Google Scholar
  20. 20.
    Wallace, D.: Quantum probability and decision theory, revisited, available online at http://xxxx.arXiv.org/abs/quant-ph/0211104. An abbreviated version is published as: Everettian rationality: Defending Deutsch’s approach to probability in the Everett interpretation, Stud. Hist. Phil. Mod. Phys. 34, 415–439 (2003)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Wallace, D.: Everett and structure, Stud. Hist. Phil. Mod. Phys. 34(1), 87–105 (2003); available online at http://xxxx.arXiv.org/abs/quant-ph/MathSciNetCrossRefGoogle Scholar
  22. 22.
    Wallace, D.: Quantum probability from subjective likelihood: Improving on Deutsch’s proof of the probability rule, Stud. Hist. Phil. Mod. Phys. (forthcoming)Google Scholar
  23. 23.
    Zeh, H.: The Physical Basis of the Direction of Time, 3rd edn., Springer-Verlag, Berlin (1999)MATHGoogle Scholar
  24. 24.
    Zurek, W.: Decoherence and the transition from quantum to classical, Phys. Today 44, No. 10, 36–44 (1991)CrossRefGoogle Scholar
  25. 25.
    Zurek, W.: Negotiating the tricky border between quantum and classical, Phys. Today 46, No. 4, 13–15, 81-90 (1993)CrossRefGoogle Scholar

Copyright information

© Center for Frontier Sciences 2005

Authors and Affiliations

  • Simon Saunders

There are no affiliations available

Personalised recommendations