Advertisement

Towards a General Operational and Realistic Framework for Quantum Mechanics and Relativity Theory

  • Diederik Aerts
  • Sven Aerts
Part of the The Frontiers Collection book series (FRONTCOLL)

Keywords

Physical Entity Complex Hilbert Space Quantum Probability Standard Quantum Mechanic Classical Entity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    von Neumann, J.V. (1932): Mathematische Grundlagen der Quantenmechanik, Springer, BerlinMATHGoogle Scholar
  2. 2.
    Birkhoff, G., and von Neumann, J. (1936): The logic of quantum mechanics, Annals of Mathematics 37, 823–843Google Scholar
  3. 3.
    Wigner, E.P. (1959): Group Theory and its Applications to Quantum Mechanics of Atomic Spectra, Academic Press, New YorkGoogle Scholar
  4. 4.
    Mittelstaedt, P. (1963): Philosophische Probleme der Modernen Physik, Bibliographisches Institut, ManheimGoogle Scholar
  5. 5.
    Mackey, G. (1963): Mathematical Foundations of Quantum Mechanics, Benjamin, New YorkMATHGoogle Scholar
  6. 6.
    Piron, C. (1964): Axiomatique quantique, Helv. Phys. Acta 37, 439–468MATHMathSciNetGoogle Scholar
  7. 7.
    Piron, C. (1976): Foundations of Quantum Physics, Benjamin, MassachusettsMATHGoogle Scholar
  8. 8.
    Aerts, D. (1981): The One and the Many: Towards a Unification of the Quantum and Classical Description of One and Many Physical Entities, Doctoral dissertation, Brussels Free UniversityGoogle Scholar
  9. 9.
    Aerts, D. (1982): Description of many physical entities without the paradoxes encountered in quantum mechanics, Found. Phys. 12, 1131–1170CrossRefMathSciNetADSGoogle Scholar
  10. 10.
    Aerts, D. (1983): Classical theories and non-classical theories as a special case of a more general theory, J. Math. Phys. 24, 2441–2453CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    Aerts, D. (1999): Foundations of quantum physics: a general realistic and operational approach, Int. J. Theor. Phys. 38, 289–358, quant-ph/0105109MATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Aerts, D. (1999): Quantum mechanics: structures, axioms and paradoxes. In: Quantum Mechanics and the Nature of Reality, ed. by Aerts, D., and Pykacz, J., Kluwer Academic, Dordrecht, quant-ph/0106132Google Scholar
  13. 13.
    Aerts, D., Colebunders, E., Van der Voorde, A., Van Steirteghem, B. (1999): State property systems and closure spaces: A study of categorical equivalence, Int. J. Theor. Phys. 38, 359–385, quant-ph/0105108MATHCrossRefGoogle Scholar
  14. 14.
    Aerts, D. (2002): Being and change: Foundations of a realistic operational formalism. In: Probing the Structure of Quantum Mechanics: Nonlinearity, Nonlocality, Probability and Axiomatics, ed. by Aerts, D., Czachor, M., and Durt, T., World Scientific, SingaporeGoogle Scholar
  15. 15.
    Keller, H. (1980): Ein nicht-klassischer Hilbertscher Raum, Math. Z. 172, 41–49MATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Solèr, M.P. (1995): Characterization of Hilbert spaces by orthomodular spaces, Comm. Algebra 23, 219–243MATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Aerts, D., and Van Steirteghem, B. (2000): Quantum axiomatics and a theorem of M.P. Solèr, Int. J. Theor. Phys. 39, 497–502, quant-ph/0105107MATHCrossRefGoogle Scholar
  18. 18.
    Aerts, D., D’Hondt, E., Gabora, L. (2000): Why the disjunction in quantum logic is not classical, Found. Phys. 30, 1473–1480, quant-ph/0007041MathSciNetCrossRefGoogle Scholar
  19. 19.
    Piron, C. (1990): Mécanique Quantique: Bases et Applications, Press Polytechnique de Lausanne, SuisseMATHGoogle Scholar
  20. 20.
    Valckenborgh, F. (2000): Operational axiomatics and compound systems. In: Current Research in Operational Quantum Logic: Algebras, Categories, Languages, ed. by Coecke, B., Moore, D.J., and Wilce, A., Kluwer Academic Publishers, Dordrecht, 219–244Google Scholar
  21. 21.
    Valckenborgh, F. (2001): Compound Systems in Quantum Axiomatics, Doctoral Thesis, Brussels Free UniversityGoogle Scholar
  22. 22.
    Durt, T., and D’Hooghe, B. (2002): The classical limit of the lattice-theoretical orthocomplementation in the framework of the hidden-measurement approach. In: Probing the Structure of Quantum Mechanics: Nonlinearity, Nonlocality, Computation and Axiomatics, ed. by Aerts, D., Czachor, M., and Durt, T., World Scientific, SingaporeGoogle Scholar
  23. 23.
    Artin, E. (1957): Geometric Algebra, Interscience Publishers Inc., New YorkMATHGoogle Scholar
  24. 24.
    Aerts, D. (1982): Example of a macroscopical situation that violates Bell inequalities, Lett. Nuovo Cimento 34, 107–111CrossRefGoogle Scholar
  25. 25.
    Aerts, D. (1984): How do we have to change quantum mechanics in order to describe separated systems. In: The Wave-Particle Dualism, ed. by Diner, S., et al., Kluwer Academic, Dordrecht, 419–431Google Scholar
  26. 26.
    Aerts, D. (1988): The description of separated systems and quantum mechanics, and a possible explanation for the probabilities of quantum mechanics. In: Micro-physical Reality and Quantum Formalism, ed. by van der Merwe, A., et al., Kluwer Academic Publishers, 97–115Google Scholar
  27. 27.
    Aerts, D. (1990): An attempt to imagine parts of the reality of the micro-world. In: Proceedings of the Conference ‘Problems in Quantum Physics’ Gdansk89, World Scientific, Singapore, 3–25Google Scholar
  28. 28.
    Aerts, D., Aerts, S., Broekaert, J., and Gabora, L. (2000): The violation of Bell inequalities in the macroworld, Found. Phys. 30, 1387–1414MathSciNetCrossRefGoogle Scholar
  29. 29.
    Aerts, D. (1985): The physical origin of the Einstein-Podolsky-Rosen-paradox. In: Open Questions in Quantum Physics: Invited Papers on the Foundations of Microphysics, ed. by Tarozzi, G., and van der Merwe, A., Kluwer Academic, Dordrecht, 33–50Google Scholar
  30. 30.
    Christiaens, W. (2002): Some notes on Aerts’ interpretation of the EPRparadox and the violation of Bell inequalities. In: Probing the Structure of Quantum Mechanics: Nonlinearity, Nonlocality, Computation and Axiomatics, ed. by D. Aerts, M. Czachor and T. Durt, World Scientific, SingaporeGoogle Scholar
  31. 31.
    Aerts, D. (1983): A possible explanation for the probabilities of quantum mechanics and a macroscopic situation that violates Bell inequalities. In: Recent Developments in Quantum Logic, ed. by P. Mittelstaedt et al., in Grundlagen der Exacten Naturwissenschaften, Vol. 6, Wissenschaftverlag, Bibliographisches Institut, Mannheim, 235Google Scholar
  32. 32.
    Aerts, D. (1986): A possible explanation for the probabilities of quantum mechanics, J. Math. Phys. 27, 202CrossRefADSMathSciNetGoogle Scholar
  33. 33.
    Aerts, D. (1987): The origin of the non-classical character of the quantum probability model. In: Information, Complexity, and Control in Quantum Physics, ed. by A. Blanquiere et al., Springer-Verlag, BerlinGoogle Scholar
  34. 34.
    Aerts, D. (1994): Quantum structures, separated physical entities and probability, Found. Phys. 24, 1227MathSciNetADSCrossRefGoogle Scholar
  35. 35.
    Coecke, B. (1995): Hidden measurement representation for quantum entities described by finite-dimensional complex Hilbert spaces, Found. Phys. 25, 1185CrossRefMathSciNetADSGoogle Scholar
  36. 36.
    Coecke, B. (1995): Generalization of the proof on the existence of hidden measurements to experiments with an infinite set of outcomes, Found. Phys. Lett. 8, 437MathSciNetGoogle Scholar
  37. 37.
    Coecke, B. (1995): Hidden measurement model for pure and mixed states of quantum physics in Euclidean space, Int. J. Theor. Phys. 34, 1313CrossRefADSMATHMathSciNetGoogle Scholar
  38. 38.
    Aerts, D. (1995): Quantum structures: An attempt to explain the origin of their appearance in nature, Int. J. Theor. Phys. 34, 1165CrossRefMATHMathSciNetGoogle Scholar
  39. 39.
    Aerts, D., Aerts, S. (1997): The hidden measurement formalism: Quantum mechanics as a consequence of fluctuations on the measurement. In: New Developments on Fundamental Problems in Quantum Physics, ed. by M. Ferrero and A. van der Merwe, Kluwer Academic, DordrechtGoogle Scholar
  40. 40.
    Aerts, D., Aerts, S., Coecke, B., D’Hooghe, B., Durt, T., and Valckenborgh, F. (1997): A model with varying fluctuations in the measurement context. In: New Developments on Fundamental Problems in Quantum Physics, ed. by M. Ferrero and A. van der Merwe, Kluwer Academic, Dordrecht, 7 Google Scholar
  41. 41.
    Aerts, D. (1998): The hidden measurement formalism: What can be explained and where paradoxes remain, Int. J. Theor. Phys. 37, 291, and quantph/0105126MATHMathSciNetCrossRefGoogle Scholar
  42. 42.
    Aerts, D., and Aerts, S. (1994): Applications of quantum statistics in psychological studies of decision processes, Found. Sc. 1, 85MathSciNetGoogle Scholar
  43. 43.
    Aerts, S. (1996): Conditional probabilities with a quantal and a Kolmogorovian limit, Int. J. Theor. Phys 35, 11, 2245MATHGoogle Scholar
  44. 44.
    Aerts, S. (1998): Interactive probability models: Inverse problems on the sphere, Int. J. Theor. Phys. 37, 1MATHCrossRefGoogle Scholar
  45. 45.
    Aerts, S. (2002): Hidden measurements from contextual axiomatics. In: Probing the Structure of Quantum Mechanics: Nonlinearity, Nonlocality, Probability and Axiomatics, ed. by Aerts, D., Czachor, M., and Durt, T., World Scientific, SingaporeGoogle Scholar
  46. 46.
    Aerts, D. (2002): Reality and probability: Introducing a new type of probability calculus. In: Probing the Structure of Quantum Mechanics: Nonlinearity, Nonlocality, Computation and Axiomatics, ed. by Aerts, D., Czachor, M., and Durt, T., World Scientific, SingaporeGoogle Scholar
  47. 47.
    Aerts, S. (2003): The Born rule from a consistency requirement on hidden measurements in complex Hilbert space, submitted to Int. J. Theor. Phys., http://arXiv.org/abs/quant-ph/0212151Google Scholar
  48. 48.
    Aerts, D., Durt, T., and Van Bogaert, B. (1993): Quantum probability, the classical limit and nonlocality. In: Proceedings of the International Symposium on the Foundations of Modern Physics 1992, Helsinki, Finland, ed. by T. Hyvonen, World Scientific, Singapore, 35–56Google Scholar
  49. 49.
    Aerts, D., and Durt, T. (1994): Quantum, classical and intermediate, an illustrative example, Found. Phys. 24, 1353–1369MathSciNetADSCrossRefGoogle Scholar
  50. 50.
    Aerts, D., and Durt, T. (1994): Quantum, classical and intermediate: A measurement model. In: Symposium on the Foundations of Modern Physics, ed. by K.V. Laurikainen, C. Montonen and K. Sunnaborg, Editions Frontières,Gives-sur-Yvettes, FranceGoogle Scholar
  51. 51.
    Aerts, D., Coecke, B., Durt, T., and Valckenborgh, F. (1997): Quantum, classical and intermediate I: A model on the Poincarè sphere, Tatra Mt. Math. Publ. 10, 225MathSciNetMATHGoogle Scholar
  52. 52.
    Aerts, D., Coecke, B., Durt, T., and Valckenborgh, F. (1997): Quantum, classical and intermediate II: The vanishing vector space structure, Tatra Mt. Math. Publ. 10, 241MathSciNetMATHGoogle Scholar
  53. 53.
    Aerts, D., Aerts, S., Durt, T., and Lévêque, O. (1999): Classical and quantum probability in the epsilon model, Int. J. Theor. Phys. 38, 407–429MATHCrossRefGoogle Scholar
  54. 54.
    Aerts, D. (1995): The game of the biomousa: A view of discovery and creation. In: Perspectives on the World, an Interdisciplinary Reflection, ed. by D. Aerts, L. Apostel, B. De Moor, S. Hellemans, E. Maex, H. Van Belle, J. Van der Veken, Brussels University Press, BrusselsGoogle Scholar
  55. 55.
    Aerts, D. (1998): The entity and modern physics: The creation-discovery view of reality. In: Interpreting Bodies: Classical and Quantum Objects in Modern Physics, ed. by Castellani, E., Princeton University Press, PrincetonGoogle Scholar
  56. 56.
    Aerts, D. (1999): The stuff the world is made of: Physics and reality. In: Einstein meets Magritte: An Interdisciplinary Reflection, ed. by Aerts, D., Broekaert, J., and Mathijs, E., Kluwer Academic, Dordrecht, quant-ph/0107044Google Scholar
  57. 57.
    Aerts, D. (1999): The game of the biomousa: A view of discovery and creation. In: Worldviews and the Problem of Synthesis, ed. by Aerts, D., Van Belle, H., and Van der Veken, J., KLuwer Academic, DordrechtGoogle Scholar
  58. 58.
    Aerts, D., and Coecke, B. (1999): The creation-discovery view: Towards a possible explanation of quantum reality. In: Language, Quantum, Music: Selected Contributed Papers of the Tenth International Congress of Logic, Methodology and Philosophy of Science, Florence, August 1995, ed. by Dalla Chiara, M.L., Giuntini, R., and Laudisa, F., Kluwer Academic, DordrechtGoogle Scholar
  59. 59.
    Aerts, D. (1992): The construction of reality and its influence on the understanding of quantum structures, Int. J. Theor. Phys. 31, 1815–1837MathSciNetCrossRefGoogle Scholar
  60. 60.
    Aerts, D. (1996): Relativity theory: What is reality?, Found. Phys. 26, 1627–1644MathSciNetADSCrossRefGoogle Scholar
  61. 61.
    Aerts, D. (1996): Framework for possible unification of quantum and relativity theories, Int. J. Theor. Phys. 35, 2399–2416MATHMathSciNetCrossRefGoogle Scholar
  62. 62.
    Aerts, D. (2001): The unification of personal presents: A dialogue of different world views. To be published in: Ontology of Dialogue: The International Readings on Theory, History and Philosophy of Culture, ed. by Moreva, L.M.Google Scholar
  63. 63.
    Sjödin, T. (1979): Synchronization in special relativity and related theories Nuovo Cim. 51B, 229–245ADSCrossRefGoogle Scholar
  64. 64.
    Goy, F., and Selleri, F. (1997): Time on a rotating platform, Found. Phys. Lett. 10, 17–29MathSciNetCrossRefGoogle Scholar

Copyright information

© Center for Frontier Sciences 2005

Authors and Affiliations

  • Diederik Aerts
  • Sven Aerts

There are no affiliations available

Personalised recommendations