Advertisement

Keywords

Impulse Response Propagation Channel Delay Spread Doppler Spectrum Roof Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

11 References

  1. Barbot JP, Levy AJ, Bic JC (1992) Estimation of fast fading distribution functions. Com. URSI Commission F Open SymposiumGoogle Scholar
  2. Bic JC, Charbonnier A, Duponteil D, Ruelle D, Tabbane S, Taisant JP (1995) Radiocommunications et mobilité. Annales des Télécommunications, 50,1: 114–141Google Scholar
  3. Berg JE (1995) A recursive method for street microcell path loss calculations. PIMRC'95, Toronto, Canada, pp 140–143Google Scholar
  4. Bertoni HL, Honcharenko W, Maciel LR, Xia HH (1994) UHF propagation prediction for wireless personal communications. Proceedings of the IEEE, vol 82,9: 1333–1359CrossRefGoogle Scholar
  5. Boithias L (1987) Radio Wave Propagation. MacGraw-Hill, New YorkGoogle Scholar
  6. Bourdeilles (1997) Modélisation de la propagation radio pour l'ingénierie radio des systèmes de communications avec les mobiles. SEE: Propagation électromagnétique dans l'atmosphère du décamétrique à l'angström, pp 115–120Google Scholar
  7. Braun WR, Dersch U (1991) A physical mobile radio channel. IEEE Transactions on Vehicular Technology vol 40,2: 472–482.CrossRefGoogle Scholar
  8. Chaigneaud L, Guillet V, Vauzelle R (2001a) 3D ray tracing method for indoor propagation modelling at 60 GHz. European Conference on Wireless Technology, LondonGoogle Scholar
  9. Chaigneaud L, Guillet V, Vauzelle R (2001b) A 3D ray tool broadband wireless system. Vehicular Technology Conference, Atlantic CityGoogle Scholar
  10. Chaigneaud L, Guillet V, Vauzelle R (2002) Méthode de tracé de rayon 3D pour la modélisation de la propagation en intérieur à 60 GHz. Propagation électromagnétique dans l'atmosphère du décamétrique à l'angström, RennesGoogle Scholar
  11. Cichon DJ, Wiesbeck W (1994) Indoor and outdoor propagation modelling in pico cells. PIMRC'94, Personal Indoor Mobile Radio CommunicationsGoogle Scholar
  12. Clarke RH (1968) A statistical theory of mobile-radio reception. BSTJ: 957–1000Google Scholar
  13. CNET/CSELT Cooperation (1998) Data transmission on DECT standard. Definition of common propagation models, regeneration scheme and performance evaluation criteria for the aligment of the two radio link simulatorsGoogle Scholar
  14. COST 259 (2000) COST 259 Web informations: www.lx.it.pt/cost259Google Scholar
  15. COST 231 (1999) Evolution of land mobile radio (including personal) communications. Final report, Information, Technologies and Sciences, European CommissionGoogle Scholar
  16. Crochiere RE, Rabiner LR (1981) Interpolation and decimation of digital signals-a tutoral review. Proceedings of the IEEE vol 69,3: 300–331Google Scholar
  17. Failly M (1989) Final Report of COST 207, Digital Land Mobile Radio Communications. CEE LuxemburgGoogle Scholar
  18. Foulonneau B, Gaudaire F, Gabillet Y (1996) Measurement method of electromagnetic transmission loss of building components using two reverberation chambers. Elect. Letters 7 vol 32,23: 2130–2131CrossRefGoogle Scholar
  19. Gahleitner R, Bonek E (1994) Radio waves penetration into urban buildings in small cell and microcells. Technische Universität Wien, Vienna, Austria, Proceedings Vehicular Technology Conference, Stockholm, pp 887–891Google Scholar
  20. Gfeller FR, Bapst URS (1979) Wireless in-house data communication via diffuse infrared radiation. Proceedings of the IEEE vol 67,11Google Scholar
  21. Hashemi H (1993) The Indoor Radio Propagation Channel. Proceedings of the IEEE vol 81,7: 943–968CrossRefGoogle Scholar
  22. Hata M (1980) Empirical formula for propagation loss in land mobile radio service. IEEE Transactions on Vehicular Technology vol 29: 317–325Google Scholar
  23. Ikekami F, Yoshida S, Takeuchi T, Umehira M (1984) Propagation factors controlling mean field strength on urban streets. IEEE Transactions on Antennas and Propagation vol 32,8: 822–829CrossRefGoogle Scholar
  24. ITU-R (1996) International Telecommunication Union Study Groups ‘Guidelines for evaluation of radio transmission technologies for IMT-2000/FPLMTS'. FPLMTS.REVAL Question ITU-R Document 8/29-EGoogle Scholar
  25. Jakoby R, Liebenow U (1995) Modelling of radiowave propagation in microcells. Proc. Intern. Conference on Antennas and Propagation. ICAP, Eindhoven, the Netherlands, pp 377–380Google Scholar
  26. Jenvey S (1994) Ray optics modelling for indoor propagation at 1.8 GHz. Proceedings of the IEEE 44th Vehicular Technology Conference, Stockholm, SwedenGoogle Scholar
  27. Kattenbach R, Fruchting H (1995) Calculation of system and correlation functions for WSSUS channels from wideband measurements. Frequenz 493–4: 42–47Google Scholar
  28. Keenan JM, Motley AJ (1990) Radio Coverage in Buildings. British Telecom Technol. J. vol 8,1Google Scholar
  29. Keller JB (1962) Geometrical theory of diffraction. JOSA vol 52: 116–130Google Scholar
  30. Kouyoumjian RG, Pathak PH (1974) A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface. Proc IEEE vol 62,11: 1448–1461Google Scholar
  31. Kurner T, Cichon DJ, Wiesbeck W (1993) Concepts and Results for 3D Digital Terrain Based Wave Propagation Models: an overview. IEEE Trans. Selected Areas in Com., vol SAC 11,7: 1002–1012CrossRefGoogle Scholar
  32. Lagrange X (2000) Les réseaux mobiles. Chapitre 2: Propagation radioélectrique. In: Sizun H, Bic JC (eds) Réseaux et Télécoms, Information-Commande-Communication, Hermès, ParisGoogle Scholar
  33. Laspougeas R, Pajusco P, Bic JC (2000) Radio propagation in urban small cells environment at 2 GHz: Experimental spatio-temporal characterization and spatial wideband channel model. Proc. IEEE Vehicular Technology Conference VTC'2000, BostonGoogle Scholar
  34. Lauer A, Bahr A, Wolff I (1994) FDTD simulations of indoor propagation. Proceedings of the 44th Vehicular Technology Conference, Stockholm, SwedenGoogle Scholar
  35. Laurenson DI, McLaughlin S, Sheikh AUH (1993) The application of ray tracing and the GTD to indoor channel modelling. IEEE Conf. GLOBECOM'93, Houston, USAGoogle Scholar
  36. Lavergnat J, Sylvain M (1997) Propagation des ondes radioélectriques. Collection Pédagogique de Télécommunication, Masson, ParisGoogle Scholar
  37. Lawton MC, McGeehan JP (1994) The application of a deterministic ray launching for the prediction of radiochannel characteristics in small cell environment. IEEE Transactions on Vehicular Technology, vol 43,4: 955–969CrossRefGoogle Scholar
  38. Liang G, Bertoni HL (1998) A new approach to 3D ray tracing for propagation prediction in cities. IEEE Transactions on Antennas and Propagation vol 46,6Google Scholar
  39. Lu YE (1993) Site precise radio wave propagation simulations by time domain finite difference methods. Proceedings of the 43th Vehicular Technology Conference, Meadowlands, USAGoogle Scholar
  40. McKown JW, Hamilton RL (1991) Ray tracing as a design tool for radio networks. IEEE Network MagazineGoogle Scholar
  41. McNamara DA, Pistorius CWI, Malherbe JAG (1990) The Uniform Geometrical Theory of Diffraction. Artech House, LondonGoogle Scholar
  42. METAMORP Project (2000) Description of the modeling method. Deliverable C2/1 www.nt.tuwien.ac.at/mobile/projects/METAMORP/en/Google Scholar
  43. Motley AJ, Keenan JM (1988) Personnal communication radio coverage in building at 900 MHz and 1700 MHz. Electronics Letters vol 24,12Google Scholar
  44. Murch RD, Cheung KW, Fong MS, Sau JHM, Chuang JCL A new approach to indoor propagation prediction. Proceedings of the 44th Vehicular Technology Conference, Stockholm, SwedenGoogle Scholar
  45. Parsons JD (1992) The mobile radio propagation channel. Pentech Press PublishersGoogle Scholar
  46. RACE ATDMA Project (1994) Channel models Issue 2. R084/ESG/CC3/DS/029/b1 Gollreiter R (ed)Google Scholar
  47. Rappaport TS, Sandhu S (1994) Radio Wave Propagation for Emerging Wireless Personal Communication Systems. IEEE Antennas and Propagation Magazine vol 36,5:14–23CrossRefGoogle Scholar
  48. Rossi JP, Barbot JP, Levy AJ (1997) Theory and measurement of the angle of arrival and time delay of UHF radiowaves using a ring array. IEEE Transactions on Antennas and Propagation vol 45,5: 876–884CrossRefGoogle Scholar
  49. Rossi JP, Bic JC, Levy AJ, Gabillet Y, Rosen M (1991) A ray launching method for radiomobile propagation in urban area. IEEE Antennas and Propagation Symposium, London, Ontario, vol 3: 1540–1543Google Scholar
  50. Rossi JP, Levy AJ (1992) A ray model for decimetric radio-wave propagation in an urban area. Radio Science vol 27,6: 971–979Google Scholar
  51. Saunders SR (1999) Antennas and Propagation for wireless communications systems. Wiley, LondonGoogle Scholar
  52. Siaud I (1996) A digital signal processing approach for the mobile radio propagation channel simulation with time and frequency diversity applied to an indoor environment at 2.2 GHz. Personal indoor mobile radio communications conference, PIMRC'96, TaiwanGoogle Scholar
  53. Siaud I (1997a) A mobile propagation channel model with frequency hopping based on a digita signal processing and statistical analysis of wideband measurements applied in micro and small cells at 2.2 GHz. IEEE Vehicular technology Conference, Phoenix, Arizona vol 2, pp 1084–1088Google Scholar
  54. Siaud I (1997b) Simulation du canal de propagation radiomobile en environnement urbain pour l'étude des performances des systèmes de communication de 3iéme génération avec diversité de fréquence. 3ièmes journées d'étude “Propagation électromagnétique dans l'atmosphère du décamétrique à l'angström' pp 277–282Google Scholar
  55. Seidel SY, Rappaport TS (1994) Site-specific propagation prediction for wireless in building personal communication system design. IEEE Transactions on Vehicular Technology vol 43,4Google Scholar
  56. Valenzuela RA (1994) Ray tracing prediction of indoor radio propagation. PIMRC'94, Personal Indoor Mobile Radio CommunicationsGoogle Scholar
  57. Valenzuela R, Landron O, Jacobs DL (1997) Estimating Local Mean Signal Strength of Indoor Multipath Propagation. IEEE Transactions on Vehicular Technology vol 46,1: 203–121CrossRefGoogle Scholar
  58. Walfish J, Bertoni HL (1988) A theoretical model of UHF propagation in urban environments. IEEE Antennas and Propagation vol 36,12: 1788–1796CrossRefGoogle Scholar
  59. Walker EH (1993) Penetration of Radio Signals into Buildings in the Cellular Radio Environment. The Bell System Technical Journal vol 62,9: 2719–2730Google Scholar
  60. Wiart J, Marquis A, Juy M (1993) Analytical Microcell Path Loss Model at 2.2 GHz. PIMRC'93, YokohamaGoogle Scholar
  61. Xia HH, Bertoni HL (1993) Radio propagation characteristics for line-of-sight microcellular and personal communications. IEEE Antennas and Propagation vol 41,10Google Scholar
  62. Yang H, Lu C (2000) Infrared wireless LAN using multiple optical sources. IEE Proc OptoElectron vol 147,4Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Personalised recommendations