Skip to main content

Physical Aspects of Ultra-Fast UV Laser Transfer

  • Chapter
Excimer Laser Technology

Abstract

Precise patterns with high density and sub-µm spatial resolution are fabricated by Laser-induced Forward Transfer (LIFT). By using ultra-fast UV laser pulses, the thermal e ects are minimal, the material transfer is highly directional and there is practically no damage to the transferred material. This is a non-contact, rapid and simple method applicable to a wide variety of target materials.

The physical aspects of the ultrafast UV laser transfer process are discussed while time-resolved stroboscopic Schlieren imaging is used to visualize and study the e ect of ultra-short (0.5 ps) and short (15 ns) pulses on the laser transfer process. In contrast to the ns laser, the directionality of the ejected material is very high in case of the sub-ps laser process. The shock wave propagation is expected to be the main mechanism for material removal in the sub-ps laser transfer process.

The use of sub-ps UV laser pulses ensures that, through linear and non-linear absorption regimes, a very thin layer of the target material absorbs the laser pulse energy initiating a thermo-elastic shock-assisted process that expels the remaining target material, which retains its functionality for further use in micro-printing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Bohandy, B.F. Kim, F.J. Adrian, A.N. Jette: J. Appl. Phys. 63, 1158–1162 (1988)

    Google Scholar 

  2. Z. Toth, T. Szörenyi, A.L. Toth: Appl. Surf. Science 69, 317 (1993)

    Google Scholar 

  3. I. Zegrioti, S. Mailis, N.A. Vainos, P. Papakostantinou, C. Kalpouzos, C.P. Grigoropoulos, C. Fotakis: Applied Phys. A 66, 579 (1998)

    Google Scholar 

  4. M. Pimenov, G.A. Shafeev, A.A. Smolin, V.I. Konov, B.K. Bodolaga: Appl. Surf. Sci. 86, 208–212 (1995)

    Google Scholar 

  5. Z. Toth, T. Szorenyl, A.L. Toth: Appl. Surf. Sci. 69, 317 (1993)

    Google Scholar 

  6. I. Zergioti, S. Mailis, N.A. Vainos, P. Papakonstantinou, C. Kalpouzos, C.P. Grigoropoulos, C. Fotakis: Appl. Phys. A: Mater. Sci. Process 66, 579 (1998)

    Google Scholar 

  7. H. Esrom, J.Y. Zhang, U. Kogelschatz, A. Pedraza: Appl. Surf. Sci. 86, 202 (1995)

    Google Scholar 

  8. E. Fogarassy, C. Fuchs, F. Kerherve, S. Hauchecorne, J. Perriere: J. Appl. Phys. 66(1), 457 (1989)

    Google Scholar 

  9. G. Koundourakis, C. Rockstuhl, D. Papazoglou, A. Klini, I. Zergioti, N.A. Vainos, C. Fotakis: Appl. Phys. Lett. 78(7), 868 (2001)

    Google Scholar 

  10. S.M. Pimenov, G. Shafeev, A. Smolin, V. Konov, B. Vodolaga: Appl. Surf. Sci. 86, 208 (1995)

    Google Scholar 

  11. A. Karaiskou, I. Zergioti, C. Fotakis, M. Kapsetaki, D. Kafetzopoulos: Appl. Surf. Sci. 208–209, 245 (2003)

    Google Scholar 

  12. I.Y.S. Lee, W.A. Tolbert, D.D. Dlott, M.M. Doxtader, D.M. Foley, D.R. Arnold, E.W. Ellis: J. Imaging Sci. and Technology 36(2), 180 (1992)

    Google Scholar 

  13. W.A. Tolbert, I.S. lee, M. Doxtader, E.W. Ellis, D. Dlott: J. of Imaging Sc. And Techn. 37(4), 411 (1993)

    Google Scholar 

  14. D. Young, R. Auyeung, A. Pique, D. Chrisey, D. Dlott: Appl. Phys. Lett. 78(21), 3169 (2001)

    Google Scholar 

  15. A.B. Bullock, P. Bolton: J. Appl Phys. 85(1), 460 (1999)

    Google Scholar 

  16. Y. Nakata, T. Okada: Appl. Phys. A 69, 275 (1999)

    Google Scholar 

  17. S.G. Koulikov, D.D. Dlott: Journal of Photochem. and Photobiol. A: Chem. 145, 183 (2001)

    Google Scholar 

  18. D.E. Hare, J. Franken, D.D. Dlott: J. Appl. Phys. 77, 5950 (1995)

    Google Scholar 

  19. P.E. Schoen, A.J. Campillo: Appl. Phys. Lett. 45, 1049 (1984)

    Google Scholar 

  20. D. Papazoglou, A. Karaiskou, I. Zergioti, C. Fotakis: Appl. Phys. Lett. 81, 1594 (2002)

    Google Scholar 

  21. I. Zergioti, D.G. Papazoglou, A. Karaiskou, C. Fotakis, E. Gamaly, A. Rode: Appl. Surf. Sci. 208–209, 177 (2003)

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Papazoglou, D.G., Zergioti, I., Fotakis, C. (2005). Physical Aspects of Ultra-Fast UV Laser Transfer. In: Basting, D., Marowsky, G. (eds) Excimer Laser Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26667-4_20

Download citation

Publish with us

Policies and ethics