Testing of Closure Assumption for Fully Developed Turbulent Channel Flow with the Aid of a Lattice Boltzmann Simulation

  • Peter Lammers
  • Kamen N. Beronov
  • Thomas Zeiser
  • Franz Durst
Conference paper


Turbulent Kinetic Energy Large Eddy Simulation Turbulent Boundary Layer Separation Bubble Recirculation Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Bhatnagar, E. P. Gross, and M. K. Krook. A model for collision processes in gases. I. small amplitude processes in charged and neutral one-component systems. Phys. Rev., 94(3):511–525, 1954.CrossRefGoogle Scholar
  2. 2.
    J. Buick and C. Greated. Gravity in lattice Boltzmann model. Phys. Rev. E, 61(6):5307–5320, 2000.CrossRefGoogle Scholar
  3. 3.
    S. Chapman and T. G. Cowling. The Mathematical Theory of Non-Uniform Gases. University Press, Cambridge, 1999.Google Scholar
  4. 4.
    S. Chen and G. D. Doolen. Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech., 30:329–364, 1998.CrossRefMathSciNetGoogle Scholar
  5. 5.
    P. Y. Chou. On the velocity correlation and the solution of the equation of turbulent fluctuation. Q. Appl. Maths., 3:38–54, 1945.MATHGoogle Scholar
  6. 6.
    S. C. Crow. Viscoelastic properties of fine-grained incompressible turbulence. J. Fluid Mech., 33:1–12, 1968.CrossRefMATHGoogle Scholar
  7. 7.
    D.C. Wilcox. Turbulence modelling for CFD. DCW Industries, Inc., La Cañada, California, 1998.Google Scholar
  8. 8.
    X. He and L.-S. Luo. Lattice Boltzmann model for the incompressible Navier-Stokes equation. J. Stat. Phys., 88(3/4):927–944, 1997.CrossRefMathSciNetGoogle Scholar
  9. 9.
    J. O. Hinze. Turbulence. McGraw-Hill, New York, 2. edition, 1975.Google Scholar
  10. 10.
    J. Jonanovic. Konwihr-Vorlesung: Turbulenz und Turbulenzmodellierung II. Vorlesungsmitschrift, Lehrstuhl für Strömungsmechanik, Universität Erlangen-Nürnberg, 2002.Google Scholar
  11. 11.
    J. Jovanović and I. Otić. On the constitutive relation for the reynolds stresses and the prandtl-kolmogorov hypothesis of effective viscosity in axisymmetric strained turbulence. Transactions of ASME Journal of Fluids Engineering, 122:48–50, 2000.Google Scholar
  12. 12.
    J. Kim, P. Moin, and R. Moser. Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech., 177, 1987.Google Scholar
  13. 13.
    A. N. Kolmogorov. Equations of motion of an incommpressible turbulent fluid. Izvestiya Akad Nauk SSSR, Ser. Phys, 6:56–58, 1942.Google Scholar
  14. 14.
    B. A. Kolovandin and I. A. Vatutin. Statistical transfer theory in nonhomogeneous turbulence. Int. J. Heat Mass Transfer, 15:2371–2383, 1970.CrossRefGoogle Scholar
  15. 15.
    P. Lammers, K. Beronov, G. Brenner, and F. Durst. Direct simulation with the lattice Boltzmann code BEST of developed turbulence in channel flows. In S. Wagner, W. Hanke, A. Bode, and F. Durst, editors, High Performance Computing in Science and Engineering, Munich 2002. Springer, 2003.Google Scholar
  16. 16.
    P. Lammers, K. Beronov, R. Volkert, G. Brenner, and F. Durst. Lattice Boltzmann Direct Numerical Simulation of Fully Developed 2d-Channel Turbulence. Computers & Fluids, submitted.Google Scholar
  17. 17.
    J. L. Lumley and G. Newman. The return to isotropy of homogeneous turbulence. J. Fluid Mech., 82:161–178, 1977.CrossRefMathSciNetGoogle Scholar
  18. 18.
    R. Moser, J. Kim, and N. Mansour. Direct numerical simulation of turbulent channel flow up to Reτ = 560. Phys. Fluids, 11, 1999.Google Scholar
  19. 19.
    S. B. Pope. Turbulent Flows. Cambridge Univ. Press., 2000.Google Scholar
  20. 20.
    Y. H. Qian, D. d'Humières, and P. Lallemand. Lattice BGK models for Navier-Stokes equation. Europhys. Lett., 17(6):479–484, 1992.Google Scholar
  21. 21.
    T. C. Schenk. Messung der turbulenten Dissipationsrate in ebenen und achsensymmetrischen Nachlaufströmungen. PhD thesis, Lehrstuhl für Strömungsmechanik, Universität Erlangen-Nürnberg, 1999.Google Scholar
  22. 22.
    U. Schumann. Realizability of Reynolds stress turbulence models. Phys. Fluids, 20:721–725, 1977.CrossRefMATHGoogle Scholar
  23. 23.
    R. Volkert. Bestimmung von Turbulenzgrößen zur verbesserten Turbulenzmodellierung auf der Basis von direkten numerischen Simulationen der ebenen Kanalströmung. PhD thesis, Lehrstuhl für Strömungsmechanik, Universität Erlangen-Nürnberg, 2004. In Vorbereitung.Google Scholar
  24. 24.
    Q.-Y. Ye. Die turbulente Dissipation mechanischer Energie in Scherschichten. PhD thesis, Lehrstuhl für Strömungsmechanik, Universität Erlangen-Nürnberg, 1996.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Peter Lammers
    • 1
  • Kamen N. Beronov
    • 1
  • Thomas Zeiser
    • 1
  • Franz Durst
    • 1
  1. 1.Institute of Fluid MechanicsUniversity of Erlangen-NurembergErlangenGermany

Personalised recommendations