Fully Three-Dimensional Coupling of Fluid and Thin-Walled Structures

  • Dominik Scholz
  • Ernst Rank
  • Markus Glück
  • Michael Breuer
  • Franz Durst
Conference paper


In this contribution, fully three-dimensional models are used for the numerical simulation of both the structure and the fluid in fluid-structure interaction computations. A partitioned, but fully implicit coupling algorithm is employed. As an example, the wind-excitation of a thin-walled tower is investigated.


Direct Numerical Simulation Lattice Boltzmann Method Grid Turbulence Turbulence Generate Grid Incompressible Turbulence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahrem, R., Hackenberg, M.G., Post, P., Redler, R., Roggenbuck, J. (2000): MpCCI — Mesh Based Parallel Code Coupling Interface. Institute for Algorithms and Scientific Computing (SCAI), GMD, Scholar
  2. 2.
    Brehm, M., Bader, R., Ebner, R. (2001): Höchstleistungsrechner in Bayern (HLRB): The Hitachi SR8000-F1. Scholar
  3. 3.
    Breuer, M. (2002): Direkte Numerische Simulation und Large-Eddy-Simulation turbulenter Strömungen auf Hochleistungsrechnern. Habilitationsschrift, Technische Fakultät, Universität Erlangen-Nürnberg, Berichte aus der Strömungstechnik, ISBN: 3-8265-9958-6, Shaker Verlag, Aachen.Google Scholar
  4. 4.
    Chung, J., Hulbert, G. (1993): A Time Integration Algorithm for Structural Dynamics with Improved Numerical Dissipation: The Generalized-α-Method. J. of Applied Mechanics, vol. 60, pp. 1562–1566.MathSciNetGoogle Scholar
  5. 5.
    Durst, F., Schäfer, M. (1996): A Parallel Block-Structured Multigrid Method for the Prediction of Incompressible Flows. Int. J. Num. Methods Fluids, vol. 22, pp. 549–565.CrossRefGoogle Scholar
  6. 6.
    Duester, A. (2002): High-Order Finite Elements for Three-Dimensional, Thin-Walled Nonlinear Continua. Dissertation, Technische Universiät München, Shaker-Verlag, Aachen.Google Scholar
  7. 7.
    Glück, M., Breuer, M., Durst, F., Halfmann, A., Rank, E. (2001): Computation of Fluid-Structure Interaction of Lightweight Structures. J. Wind Eng. Ind. Aerodyn., vol. 89/14–15, pp. 1351–1368.CrossRefGoogle Scholar
  8. 8.
    Glück, M., Breuer, M., Durst, F., Halfmann, A., Rank, E. (2003): Computation of Wind-Induced Vibrations of Flexible Shells and Membranous Structures. J. of Fluids and Structures, vol. 17, pp.739–765.CrossRefGoogle Scholar
  9. 9.
    Gordon, W.J., Hall, C.A. (1973): Construction of Curvilinear Co-ordinate Systems and Applications to Mesh Generation. Int. J. Num. Meth. Eng., vol. 7, pp. 461–477.CrossRefMathSciNetGoogle Scholar
  10. 10.
    Halfmann, A. (2002): Ein geometrisches Modell zur numerischen Simulation der Fluid-Struktur-Interaktion windbelasteter, leichter Flächentragwerke. Dissertation, Lehrstuhl für Bauinformatik, Technische Universität München.Google Scholar
  11. 11.
    Szabo, B.A., Babuska, I. (1991) Finite Element Analysis. John Wiley & Sons.Google Scholar
  12. 12.
    Werner, H. & Wengle, H. (1991): Large-Eddy Simulation of Turbulent Flow Over and Around a Cube in a Plate Channel. 8th Symposium on turbulent shear flow, Technical University of Munich, Germany, Sept. 9–11, 1991.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Dominik Scholz
    • 1
  • Ernst Rank
    • 1
  • Markus Glück
    • 2
  • Michael Breuer
    • 2
  • Franz Durst
    • 2
  1. 1.Institute of Computer Science in Civil EngineeringTechnical University of MunichMünchenGermany
  2. 2.Institute of Fluid MechanicsUniversity of Erlangen-NürnbergErlangenGermany

Personalised recommendations