Advertisement

Quantum Chromodynamics with Chiral Quarks

  • Vladimir Braun
  • Dirk Brömmel
  • Christof Gattringer
  • Meinulf Göckeler
  • Peter Hasenfratz
  • Simon Hauswirth
  • Dieter Hierl
  • Kieran Holland
  • Philipp Huber
  • Thomas Jörg
  • Keisuke Jimmy Juge
  • Christian B. Lang
  • Ferenc Niedermayer
  • Paul E.L. Rakow
  • Stefan Schaefer
  • Andreas Schäfer
  • Stefan Solbrig
Conference paper

Abstract

Quantum-Chromodynamics (QCD) is the theory of quarks, gluons and their interaction. It has an important almost exact symmetry, the so-called chiral symmetry (which is actually broken spontaneously). This symmetry plays a major role in all low-energy hadronic processes. For traditional formulations of lattice QCD, CPU-time and memory limitations prevent simulations with light quarks and this symmetry is seriously violated. During the last years successful implementations of the chiral symmetry for lattice QCD have been constructed. We use two approximate implementations (both of them in the quenched approximation) with different specific advantages. We have also made progress towards the development of a practical algorithm to allow for simulations with dynamical quarks. In 2003 a series of discoveries of a new class of particles, called pentaquarks, has created very strong interest in lattice studies of resonance states. We have performed such studies with a specific method for the N* resonances with very satisfying results and are currently working on similar calculations for the pentaquarks. We have also addressed the question, which type of gauge field configurations is responsible for confinement and chiral symmetry breaking. Finally we are calculating three-point functions. We hope that for the small quark masses which we reach the results will not only be of direct phenomenological interest, but will also test predictions from chiral perturbation theory.

Keywords

Quark Masse Dirac Operator Chiral Symmetry Chiral Symmetry Breaking Chiral Perturbation Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Gattringer et al. [Bern-Graz-Regensburg Collaboration] in High Performance Computing in Science and Engineering in Munich, 2004 (Springer)Google Scholar
  2. 2.
    C. Gattringer et al. [Bern-Graz-Regensburg Collaboration], Nucl. Phys. B 677 (2004) 3, hep-lat/0307013CrossRefGoogle Scholar
  3. 3.
    D. Brömmel et al. [Bern-Graz-Regensburg Collaboration], hep-ph/0307073Google Scholar
  4. 4.
    D. Brömmel et al. [Bern-Graz-Regensburg Collaboration], proceedings LATTICE 2003, Tsukuba, Ibaraki, Japan, 15–19 Jul 2003, hep-lat/0309036Google Scholar
  5. 5.
    F. Csikor, Z. Fodor, S. D. Katz and T. G. Kovacs, JHEP 0311 (2003) 070, hep-lat/0309090; S. Sasaki, hep-lat/0310014Google Scholar
  6. 6.
    V. M. Braun, T. Burch, C. Gattringer, M. Göckeler, G. Lacagnina, S. Schaefer and A. Schäfer, Phys. Rev. D 68 (2003) 054501, hep-lat/0306006CrossRefGoogle Scholar
  7. 7.
    D. Becirevic, V. Lubicz, F. Mescia and C. Tarantino, JHEP 0305 (2003) 007, hep-lat/0301020Google Scholar
  8. 8.
    G. Martinelli, C. Pittori, C. T. Sachrajda, M. Testa, and A. Vladikas, Nucl. Phys. B 445 (1995) 81CrossRefGoogle Scholar
  9. 9.
    M. Göckeler et al., Nucl. Phys. B 544 (1999) 699CrossRefGoogle Scholar
  10. 10.
    C. Gattringer, R. Hoffmann, and S. Schaefer, Phys. Rev. D 65 (2002) 094503CrossRefGoogle Scholar
  11. 11.
    C. Gattringer et al. [Bern-Graz-Regensburg Collaboration], Nucl. Phys. Proc. Suppl. 119 (2003) 796, hep-lat/0209099CrossRefMATHGoogle Scholar
  12. 12.
    C. Gattringer and S. Schaefer, Nucl. Phys. B 654 (2003) 30, hep-lat/0212029CrossRefGoogle Scholar
  13. 13.
    C. Gattringer, Phys. Rev. D 67 (2003) 034507, hep-lat/0210001CrossRefGoogle Scholar
  14. 14.
    T.C. Kraan and P. van Baal, Phys. Lett. B 428 (1998) 268, ibid. B 435 (1998) 389, Nucl. Phys. B 533 (1998) 627; K. Lee and C. Lu, Phys. Rev. D 58 (1998) 1025011CrossRefMathSciNetGoogle Scholar
  15. 15.
    C. Gattringer et al., proceedings LATTICE 2003, Tsukuba, Ibaraki, Japan, 15–19 Jul 2003, hep-lat/0309106Google Scholar
  16. 16.
    A. Hasenfratz, P. Hasenfratz and F. Niedermayer, in progressGoogle Scholar
  17. 17.
    M. Hasenbusch, Phys. Rev. D 59 (1999) 054505, hep-lat/9807031; A. Hasenfratz and F. Knechtli,Comput. Phys. Commun. 148 (2002) 81, hep-lat/0203010; A. Hasenfratz and A. Alexandru,Phys. Rev. D 65 (2002) 114506, heplat/0203026; Phys. Rev. D 66 (2002) 094502, hep-lat/0207014CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Vladimir Braun
    • 1
  • Dirk Brömmel
    • 1
  • Christof Gattringer
    • 1
  • Meinulf Göckeler
    • 2
    • 1
  • Peter Hasenfratz
    • 3
  • Simon Hauswirth
    • 3
  • Dieter Hierl
    • 1
  • Kieran Holland
    • 4
  • Philipp Huber
    • 5
  • Thomas Jörg
    • 3
  • Keisuke Jimmy Juge
    • 6
  • Christian B. Lang
    • 5
  • Ferenc Niedermayer
    • 3
  • Paul E.L. Rakow
    • 7
  • Stefan Schaefer
    • 1
  • Andreas Schäfer
    • 1
  • Stefan Solbrig
    • 1
  1. 1.Institut für Theoretische PhysikUniversität RegensburgRegensburgGermany
  2. 2.Institut für Theoretische PhysikUniversität LeipzigLeipzigGermany
  3. 3.Institut für Theoretische PhysikUniversität BernBernSwitzerland
  4. 4.Department of PhysicsUniversity of California at San DiegoSan DiegoUSA
  5. 5.Institut für Theoretische PhysikUniversität GrazGrazAustria
  6. 6.School of MathematicsTrinity CollegeDublin 2Ireland
  7. 7.Dept. of Math. SciencesUniversity of LiverpoolLiverpoolUK

Personalised recommendations