Skip to main content

DNA Base Properties from First Principles Plane-Wave Calculations

  • Conference paper
High Performance Computing in Science and Engineering, Munich 2004

Abstract

We present equilibrium geometries, dipole moments, ionization energies and electron affinities of the DNA base molecules adenine, thymine, guanine, and cytosine calculated from first principles. The comparison of our results with experimental data and results obtained by using quantum chemistry methods shows that gradient-corrected density-functional theory (DFT-GGA) calculations using ultra-soft pseudopotentials and a plane-wave basis are a numerically efficient and accurate alternative to methods employing localized orbitals for the expansion of the electron wave functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Møller and M. S. Plesset, Phys. Rev. 46, 618 (1934).

    Article  MATH  Google Scholar 

  2. K. Raghavachari, G. W. Trucks, J. A. Pople, M. Head-Gordon, Chem. Phys. Lett. 157, 479 (1989).

    Article  Google Scholar 

  3. J. D. Watts, J. Gauss, R. J. Bartlett, J. Chem. Phys. 98, 8718 (1993).

    Article  Google Scholar 

  4. S. F. Boys and F. Bernardi, Mol. Phys. 19, 553 (1970).

    Google Scholar 

  5. A. Hamza, A. Vibok, G. J. Halasz, I. Mayer, J. Mol. Struc. — Theochem 501, 427 (2000).

    Article  Google Scholar 

  6. J. Furthmüller, P. Käckell, F. Bechstedt, G. Kresse, Phys. Rev. B 61, 4576 (2000).

    Article  Google Scholar 

  7. J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, C. Fiolhais, Phys. Rev. B 46, 6671 (1992).

    Article  Google Scholar 

  8. J. P. Perdew, K. Burke, M. Enzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  Google Scholar 

  9. D. Vanderbilt, Phys. Rev. B 41, 7892 (1990).

    Article  Google Scholar 

  10. K. Laasonen, A. Pasquarello, R. Car, C. Lee, D. Vanderbilt, Phys. Rev. B 47, 10142 (1992).

    Article  Google Scholar 

  11. L. Kleinman and D. M. Bylander, Phys. Rev. Lett. 48, 1425 (1982).

    Article  Google Scholar 

  12. P. Pulay, Chem. Phys. Lett. 73, 393 (1980).

    Article  Google Scholar 

  13. D. M. Wood and A. Zunger, J. Phys. A 18, 1343 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  14. G. Kresse and J. Furthmüller, Comp. Mat. Sci. 6, 15 (1996).

    Article  Google Scholar 

  15. R. D. King-Smith, M. C. Payne, J. S. Lin, Phys. Rev. B 44, 13063 (1991).

    Article  Google Scholar 

  16. L. E. Ramos, J. Furthmüller, F. Bechstedt, L. M. R. Scolfaro, J. R. Leite, Phys. Rev. B 66, 075209 (2002).

    Article  Google Scholar 

  17. R. S. Fellers, D. Barsky, F. Gygi, M. Colvin, Chem. Phys. Lett. 312, 548 (1999).

    Article  Google Scholar 

  18. F. L. Gervasio, P. Carloni, M. Parrinello, Phys. Rev. Lett. 89, 108102 (2002).

    Article  Google Scholar 

  19. W. Kohn, Rev. Mod. Phys. 71, 1253 (1999).

    Article  Google Scholar 

  20. L. Clowney, S. C. Jain, A. R. Srinivasan, J. Westbrook, W. K. Olson, H. M. Berman, J. Am. Chem. Soc. 118, 509 (1996).

    Article  Google Scholar 

  21. M. Fuchs and M. Scheffler, Phys. Rev. B 57, 2134 (1998).

    Article  Google Scholar 

  22. Y. Podolyan, Y. V. Rubin, J. Leszczynski, J. Phys. Chem. A 104, 9964 (2000).

    Article  Google Scholar 

  23. J. Šponer and P. Hobza, J. Phys. Chem. 98, 3161 (1994).

    Article  Google Scholar 

  24. M. K. Shukla and P. C. Mishra, Chem. Phys. 240, 319 (1999).

    Article  Google Scholar 

  25. J. D. Gu and J. Leszczynski, J. Phys. Chem. A 103, 2744 (1999).

    Article  Google Scholar 

  26. R. Di Felice, A. Calzolari, E. Molinari, A. Garbesi, Phys. Rev. B 65, 045104 (2001).

    Article  Google Scholar 

  27. P. Hobza and J. Šponer, Chem. Rev. 99, 3247 (1999).

    Article  Google Scholar 

  28. J. Šponer and P. Hobza, Int. J. Quant. Chem. 57, 959 (1996).

    Article  Google Scholar 

  29. J. Leszynski, Int. J. Quantum Chem. 43, 19 (1992).

    Google Scholar 

  30. C. Kress, M. Fiedler, W. G. Schmidt, F. Bechstedt, Phys. Rev. B 50, 17697 (1994).

    Article  Google Scholar 

  31. F. Bechstedt, A. A. Stekolnikov, J. Furthmüller, P. Käckell, Phys. Rev. Lett. 87, 016103 (2001).

    Article  Google Scholar 

  32. D. G. Lister, J. K. Tyler, J. H. Høg, N. W. Larsen, J. Mol. Struct. 23, 253 (1974).

    Article  Google Scholar 

  33. H. DeVoe and I. Tinoco, Jr, J. Mol. Biol. 4, 500 (1962).

    Article  Google Scholar 

  34. H.-P. Weber and B. M. Craven, Acta Crystallogr. B46, 532 (1990).

    Google Scholar 

  35. I. Kulakowski, M. Geller, B. Lesyng, K. L. Wierzcho, Biochim. Biophys. Acta 361, 119 (1974).

    Google Scholar 

  36. J. B. Li, J. H. Xing, C. J. Cramer, D. G. Truhlar, J. Chem. Phys. 111, 885 (1999).

    Article  Google Scholar 

  37. F. Bechstedt, in: U. Rössler, ed., Festkörperprobleme/Advances in Solid State Physics, vol. 32, p. 161, Vieweg, Braunschweig/Wiesbaden (1992).

    Google Scholar 

  38. F. Aryasetiawan and O. Gunnarsson, Rep. Prog. Phys. 61, 237 (1998).

    Article  Google Scholar 

  39. W. G. Aulbur, L. Jonsson, J. W. Wilkins, Solid State Physics: Advances in Research and Applications, vol. 54, chap. Quasiparticle calculations in solids, p. 1, Academic, San Diego (2000).

    Google Scholar 

  40. S. Albrecht, L. Reining, R. Del Sole, G. Onida, Phys. Rev. Lett. 80, 4510 (1998).

    Article  Google Scholar 

  41. L. X. Benedict, E. L. Shirley, R. B. Bohn, Phys. Rev. Lett. 80, 4514 (1998).

    Article  Google Scholar 

  42. M. Rohlfing and S. G. Louie, Phys. Rev. Lett. 81, 2312 (1998).

    Article  Google Scholar 

  43. P. H. Hahn, W. G. Schmidt, F. Bechstedt, Phys. Rev. Lett. 88, 016402 (2002).

    Article  Google Scholar 

  44. W. G. Schmidt, S. Glutsch, P. H. Hahn, F. Bechstedt, Phys. Rev. B 67, 085307 (2003).

    Article  Google Scholar 

  45. I. Vasiliev, S. Ögüt, J. R. Chelikowsky, Phys. Rev. B 81, 4959 (1999).

    Google Scholar 

  46. G. Onida, L. Reining, A. Rubio, Rev. Mod. Phys. 74, 601 (2002).

    Article  Google Scholar 

  47. V. M. Orlov, A. N. Smirnov, Y. M. Varshavsky, Tetrahedron Lett. 48, 4377 (1976).

    Article  Google Scholar 

  48. N. Russo, M. Toscano, A. Grand, J. Comput. Chem. 21, 1243 (2000).

    Article  Google Scholar 

  49. N. S. Hush and A. S. Cheung, Chem. Phys. Lett. 34, 11 (1975).

    Article  Google Scholar 

  50. F. Prat, K. N. Houk, C. S. Foote, J. Am. Chem. Soc. 120, 845 (1998).

    Article  Google Scholar 

  51. A. A. Voityuk, J. Jortner, M. Bixon, N. Rösch, Chem. Phys. Lett. 324, 430 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Preuß, M., Seino, K., Schmidt, W.G. (2005). DNA Base Properties from First Principles Plane-Wave Calculations. In: Wagner, S., Hanke, W., Bode, A., Durst, F. (eds) High Performance Computing in Science and Engineering, Munich 2004. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26657-7_32

Download citation

Publish with us

Policies and ethics