Advertisement

DMRG Investigation of Stripe Formation in Doped Hubbard Ladders

  • Georg Hager
  • Gerhard Wellein
  • Eric Jeckelmann
  • Holger Fehske
Conference paper

Abstract

Using a parallelized density matrix renormalization group (DMRG) code we demonstrate the potential of the DMRG method by calculating ground-state properties of two-dimensional Hubbard models. For 7 × 6, 11 × 6 and 14 × 6 Hubbard ladders with doped holes and cylindrical boundary conditions (BC), open in x-direction and periodic in the 6-leg y-direction, we comment on recent conjectures about the appearance of stripe-like features in the hole and spin densities. In addition we present results for the half-filled 4 ×4 system with periodic BC, advance to the 6 × 6 case and pinpoint the limits of the current approach.

Keywords

Fundamental Physic Density Matrix Renormalization Group Cylindrical Boundary Condition Density Matrix Renormalization Group Method Heavy Quark System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.R. White, Density Matrix Formulation for Quantum Renormalization Groups, Phys. Rev. Lett. 69, 2863–2866 (1992).CrossRefGoogle Scholar
  2. 2.
    S.R. White, Density-Matrix Algorithms for Quantum Renormalization Groups, Phys. Rev. B 48, 10345–10356 (1993).CrossRefGoogle Scholar
  3. 3.
    R. M. Noack and S.R. White, The Density Matrix Renormalization Group, in I. Peschel, X. Wang, M. Kaulke and K. Hallberg (eds), Density-Matrix Renormalization: A New Numerical Method in Physics, Lectures of a seminar and workshop, held at the Max-Planck-Institut für Physik Komplexer Systeme, Dresden, Germany, August 24th to September 18th, 1998. Springer, Berlin Heidelberg New York (1999) (Lecture Notes in Physics Vol. 528).Google Scholar
  4. 4.
    G. Hager, E. Jeckelmann, H. Fehske, and G. Wellein, Parallelization Strategies for Density Matrix Renormalization Group Algorithms on Shared-Memory Systems, J. Comp. Phys. 194, 795 (2004).CrossRefGoogle Scholar
  5. 5.
    G. Hager, E. Jeckelmann, H. Fehske, and G. Wellein, Exact Numerical Treatment of Finite Quantum Systems using Leading-Edge Supercomputers, in: Proceedings of the International Conference on High Performance Scientific Computing, March 10–14 2003, Hanoi, Vietnam. Springer, Berlin Heidelberg (2004) (to be published).Google Scholar
  6. 6.
    S. R. White and D. J. Scalapino, Energetics of Domain Walls in the 2D t-J Model, Phys. Rev. Lett. 81, 3227 (1998).CrossRefGoogle Scholar
  7. 7.
    C. S. Hellberg and E. Manousakis, Stripes and the t-J Model, Phys. Rev. Lett. 83, 132 (1999).CrossRefGoogle Scholar
  8. 8.
    S. R. White and D. J. Scalapino, Comment on “Stripes and the t-J Model”, Phys. Rev. Lett. 84, 3021 (2000).CrossRefGoogle Scholar
  9. 9.
    C. S. Hellberg and E. Manousakis, Hellberg and Manousakis Reply, Phys. Rev. Lett. 84, 3022 (2000).CrossRefGoogle Scholar
  10. 10.
    S. R. White and D. J. Scalapino, Stripes on a 6-leg Hubbard Ladder, Phys. Rev. Lett. 91, 136403 (2003).CrossRefGoogle Scholar
  11. 11.
    S. R. White, D. J. Scalapino, R. L. Sugar, E. Y. Loh, J. E. Gubernatis, and R. T. Scalettar, Numerical Study of the two-dimensional Hubbard Model, Phys. Rev. B 40, 506 (1989).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Georg Hager
    • 1
  • Gerhard Wellein
    • 1
  • Eric Jeckelmann
    • 2
  • Holger Fehske
    • 3
  1. 1.Regionales Rechenzentrum Erlangen (RRZE)ErlangenGermany
  2. 2.Institut für Physik, KOMET 337Johannes Gutenberg-Universität MainzMainzGermany
  3. 3.Institut für PhysikErnst-Moritz-Arndt-Universität GreifswaldGreifswaldGermany

Personalised recommendations