Skip to main content

Abstract

We report on the successful numerical implementation of an original method for the accurate quantum treatment of helium under electromagnetic driving. Our approach is the first to allow for a description of the highly complex quantum dynamics of this system, in the entire non-relativistic parameter regime, i.e., it provides full spectral and dynamical information on the ionization of the atomic ground state by optical fields, as well as on the dynamics of doubly excited Rydberg states under radiofrequency driving. As a by-product, the non-trivial role of the dimension of configuration space for the field-free dynamics of doubly excited helium is elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Einstein A.: Verh. Dtsch. Phys. Ges. 19, 82 (1917).

    Google Scholar 

  2. Domke M., Schulz K., Remmers G., Kaindl G., and Wintgen D.: Phys. Rev. A 53, 1424 (1996).

    Article  Google Scholar 

  3. Grémaud B. and Delande D.: Europhys. Lett. 40, 363 (1997).

    Article  Google Scholar 

  4. Richter K. and Wintgen D.: Phys. Rev. Lett. 65, 1965 (1990).

    Article  Google Scholar 

  5. Tannor G., Richter K., and Rost J.M.: Rev. Mod. Phys. 72, 497 (2000).

    Article  Google Scholar 

  6. Rost J.M., Schulz K., Domke M., and Kaindl G.: J. Phys. B 30, 4663 (1997); Püttner R., Grémaud B., Delande D., Domke M., Martins M., Schlachter A.S., and Kaindl G.: Phys. Rev. Lett. 86, 3747 (2001).

    Article  Google Scholar 

  7. Giannoni M.J., Voros A., and Zinn-Justin J. (eds.): “Chaos and Quantum Physics”, North-Holland, Amsterdam 1991.

    Google Scholar 

  8. Weber T. et al.: Nature 405, 658 (2000).

    Article  Google Scholar 

  9. Moshammer R. et al.: Phys. Rev. A 65, 35401 (2002).

    Article  Google Scholar 

  10. Taylor K., Parker J.S., Meharg K.J., and Dundas D.: Eur. Phys. J. D 26, 67 (2003).

    Article  Google Scholar 

  11. Lambropoulos P., Maragakis P., and Zhang J.: Phys. Rep. 305, 203 (1998).

    Article  Google Scholar 

  12. Scrinzi A. and Piraux B.: Phys. Rev. A 56, R13 (1997).

    Article  Google Scholar 

  13. Purvis J., Dörr M., Terao-Dunseth M., Joachain C.J., Burke P.G., and Noble C.J.: Phys. Rev. Lett. 71, 3943 (1993).

    Article  Google Scholar 

  14. Shirley J.H.: Phys. Rev. 138, B979 (1965).

    Article  Google Scholar 

  15. Ho Y.K.: Phys. Rep. 99, 1 (1983).

    Article  Google Scholar 

  16. Krug A. and Buchleitner A.: Phys. Rev. A 66, 53416 (2002).

    Article  Google Scholar 

  17. Madroñero J.: Spectral properties of planar helium under periodic driving, Dissertation, Ludwig-Maximilians-Universität München (2004), http://edoc.ub.uni-muenchen.de/archive/00002187/.

    Google Scholar 

  18. Sacha K. and Eckhardt B.: Phys. Rev. A 63, 043414 (2001).

    Article  Google Scholar 

  19. de Jesus V.L.B., Feuerstein B., Zrost K., Fischer D., Rudenko A., Afaneh F., Schröter C.D., Moshammer R., and Ullrich J.: J. Phys. B 37, L161 (2004).

    Article  Google Scholar 

  20. Stébé B. and Ainane A.: Superlattices and Microstruct. 5 545 (1989).

    Article  Google Scholar 

  21. Nazmitdinov R.G., Simonović N.S., and Rost J.M.: Phys. Rev. B 65, 155307 (2002).

    Article  Google Scholar 

  22. Hilico L., Grémaud B., Jonckheere T., Billy N., and Delande D.: Phys. Rev. A 66, 22101 (2002).

    Article  Google Scholar 

  23. Karypis G. and Kumar V.: J. Parall. Distrib. Comp. 48(1), 96 (1998).

    Article  MathSciNet  Google Scholar 

  24. http://www.lrz-muenchen.de/services/compute/hlrb/hardware-en/

    Google Scholar 

  25. http://www.rzg.mpg.de/computing/IBM_P/

    Google Scholar 

  26. Krug A. and Buchleitner A.: in High Performance Computing in Science and Engineering. Munich 2002, Transactions of the First Joint HLRB and KONWIHR Result and Reviewing Workshop, 10–11 October 2002, Munich.

    Google Scholar 

  27. Eichmann U., Lange V., and Sandner W.: Phys. Rev. Lett. 64, 274 (1990).

    Article  Google Scholar 

  28. Schlagheck P. and Buchleitner A.: Eur. Phys. J. D 22, 401 (2003).

    Google Scholar 

  29. Lappas D.G., Sanpera A., Watson J.B., Burnett K., Knight P.L., Grobe R., and Eberly J.H.: J. Phys. B 29, L619 (1996); Lein M., Gross E.K.U., and Engel V.: Phys. Rev. Lett. 85, 4707 (2000).

    Article  Google Scholar 

  30. Richter K., Briggs J.S., Wintgen D., and Solovev E.A.: J. Phys. B 25, 3929 (1992).

    Article  Google Scholar 

  31. Tomsovic S. and Ullmo D.: Phys. Rev. E 50, 145 (1994); Zakrzewski J., Delande D., and Buchleitner A.: Phys. Rev. Lett. 75, 4015 (1995).

    Article  Google Scholar 

  32. Assion A., Naumert T., Bergt M., Brixner T., Kiefer B., Seyfried V., Strehle M., and Gerber G.: Science 282, 919 (1998); Weinacht T.C., Ahn J., Bucksbaum P.H.: Nature 397, 233 (1999); Arbo D.G., Reinhold C.O., and Burgdörfer J.: Phys. Rev. A 69, 23409 (2004).

    Article  Google Scholar 

  33. Hanson L.G. and Lambropoulos P.: Phys. Rev. Lett. 77, 2186 (1996).

    Article  Google Scholar 

  34. Buchleitner A.: Atomes de Rydberg en champ micro-onde: regularité et chaos, thèse de doctorat, Université Pierre et Marie Curie, Paris 1993.

    Google Scholar 

  35. Delande D. and Buchleitner A.: Adv. At. Mol. Opt. Phys. 34, 85 (1994).

    Google Scholar 

  36. Białynicki-Birula I., Kalinski M., and Eberly J.H.: Phys. Rev. Lett. 73, 1777 (1994).

    Article  Google Scholar 

  37. Brunello A.F., Uzer T., and Farelly D.: Phys. Rev. Lett. 76, 2874 (1996).

    Article  Google Scholar 

  38. Buchleitner A., Delande D., and Zakrzewski J.: Phys. Rep. 368, 409 (2002).

    Article  MathSciNet  Google Scholar 

  39. Maeda H. and Gallagher T.F.: Phys. Rev. Lett. 92, 133004 (2004).

    Article  Google Scholar 

  40. Schlagheck P. and Buchleitner A.: Physica D 131, 110 (1999).

    Article  Google Scholar 

  41. Graham R.: Comm. At. Mol. Phys. 25, 219 (1991).

    Google Scholar 

  42. Raman C., Weinacht T.C., and Bucksbaum P.H.: Phys. Rev. A 55, R3995 (1997).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Madroñero, J., Buchleitner, A. (2005). Planar Helium under Electromagnetic Driving. In: Wagner, S., Hanke, W., Bode, A., Durst, F. (eds) High Performance Computing in Science and Engineering, Munich 2004. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26657-7_30

Download citation

Publish with us

Policies and ethics