Density-functional Calculation of Structural Properties in Ionic and Semiconductor Crystals

  • Karin Schmalzl
  • Gernot Deinzer
  • Michael Malorny
  • Dieter Strauch
Conference paper


We compare the results of different ab-initio density-functional methods (Wien97, VASP, ABINIT, PWscf) and approximations for the electronic, structural, and dynamical properties of a variety of single crystals, namely the ionic conductors CaF2, BaF2, ZrO2, and LaF3, and the semiconductors CdS and CdSe. In particular, we have ported the PWscf code to the Hitachi computer. These results are basic for the more extensive and current calculations of the static and lattice-dynamical properties of these systems as well as of systems like ZrO2−δ and mixed-crystal systems like CdSxSe1−x . We also report preliminary neutron scattering data at various temperatures for the structure of LaF3.


Electronic Ground State Ultrasoft Pseudopotentials Adenine Cytosine Molecular Electron Wave Function Empirical Molecular Dynamic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blaha, P., Schwarz, K., Sorantin, P., Trickey, S. B. (1990): Full-potential, linearized augmented plane wave programs for crystalline systems. Comp. Phys. Comm. 59, 399. ( Scholar
  2. 2.
    Gonze, X. (1997): First-principles responses of solids to atomic displacements and homogeneous electric fields: Implementation of a conjugate-gradient algorithm. Phys. Rev. B 55, 10337. ( Scholar
  3. 3.
    Kresse, G., Furthmüller, J. (1996): Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169. ( Scholar
  4. 4.
    Baroni, S., Dal Corso, A., de Gironcoli, S., Giannozzi, P.: Scholar
  5. 5.
    Hartwigsen, C., Goedecker, S., Hutter, J. (1998): Relativistic separable dual-space Gaussian pseudopotentials from H to Rn. Phys. Rev. B 58, 3641.CrossRefGoogle Scholar
  6. 6.
    Vanderbilt, D. (1990): Phys. Rev. B 41, 7892.CrossRefGoogle Scholar
  7. 7.
    Kresse, G., Hafner, J. (1994): Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements. J. Phys. Condens. Matter 6, 8245.CrossRefGoogle Scholar
  8. 8.
    A list of ultrasoft pseudopotentials can be found under the URL: Scholar
  9. 9.
    Kresse, G., Joubert, J. (1999): From ultrasoft pseudopotentials to the projector augmented wave method. Phys. Rev. B 59, 1758.CrossRefGoogle Scholar
  10. 10.
    Stapper, G., Bernasconi, M., Nicoloso, N., Parinello, M. (1999): Ab initio study of structural and electronic properties of yttria-stabilized cubic zirconia. Phys. Rev. B 59, 797.CrossRefGoogle Scholar
  11. 11.
    Fabris, S., Paxton, A. T., Finnis, M. (2002): Acta Materialia 50, 5171.CrossRefGoogle Scholar
  12. 12.
    Mansmann, M. (1965): Die Kristallstruktur von Lanthantrifluorid. Z. Kristallogr. 122, 375.CrossRefGoogle Scholar
  13. 13.
    Zalkin, A., Templeton, D. H. (1985): Refinement of the trigonal crystal structure of lanthanum trifluoride with neutron diffraction data. Acta Cryst. B 41, 91.CrossRefGoogle Scholar
  14. 14.
    Gregson, D., Catlow, C. R. A. (1983): The structure of LaF3 — a single-crystal neutron diffraction study at room temperature. Acta Cryst. B 39, 687.CrossRefGoogle Scholar
  15. 15.
    Maksimov, B. A., Sirota, M. I., Galiulin, R. V., Sobolev, B. P. (1985): The crystal structure of PrF3, and the twinning and symmetry of tysonite-like structures. Sov. Phys. Crystallogr. 30, 164.Google Scholar
  16. 16.
    Schmalzl, K., Strauch, D., Schober, H. (2003): Lattice-dynamical and groundstate properties of CaF2 studied by inelastic neutron scattering and density-functional methods. Phys. Rev. B 68, 144301.CrossRefGoogle Scholar
  17. 17.
    Verstraete, M., Gonze, X. (2003): First-principles calculation of the electronic, dielectric, and dynamical properties of CaF2. Phys. Rev. B 68, 195123.CrossRefGoogle Scholar
  18. 18.
    Mérawa, M., Llunell, M., Orlando, R., Gelize-Duvignau, M., Dovesi, R. (2003): Structural, electronic and elastic properties of some fluoride crystals: an ab initio study. Chem. Phys. Lett. 368, 7.CrossRefGoogle Scholar
  19. 19.
    Wyckoff, R. W. G. (1963): Crystal Structures, Vol. 1, 2nd ed., Wiley, New York etc.Google Scholar
  20. 20.
    Zhao, X., Vanderbilt, D. (2002): Phonons and lattice dielectric properties of zirconia. Phys. Rev. B 65, 75105.CrossRefGoogle Scholar
  21. 21.
    Winkler, B., Knorr, K., Milman V. (2003): Prediction of the structure of LaF3 at high pressures. J. Alloys. Comp. 349, 111.CrossRefGoogle Scholar
  22. 22.
    Belzner, A., Schulz, H. Heger, G. (1994): The thermal vibrations and the fluorine ionic conductivity in LaF3. Z. Krist. 209, 239.CrossRefGoogle Scholar
  23. 23.
    Müller-Bunz, H., Schleid, T. (1999): La3F3[Si3O9]: Das erste Fluoridsilicat aus dem ternären System LaF3/La2)3/SiO2. Z. Anorg. Allg. Chem. 625, 1377.CrossRefGoogle Scholar
  24. 24.
    Wei, S. H., Zhang, S. B. (2000): Structure stability and carrier localization in CdX (X=S,Se,Te) semiconductors. Phys. Rev. B 62, 6944.CrossRefGoogle Scholar
  25. 25.
    Landolt-Börnstein (1982): Numerical Data and Functional Relationships in Science and Technology, edited by O. Madelung, Springer-Verlag, Berlin, Vol. 17b.Google Scholar
  26. 26.
    Abrikosov, N. Kh., Bankina, V. B., Poretskaya, L. V., Shelimova, L. E., Skudnova, E. V. (1969): Semiconducting II–IV, IV–VI, and V–VI Compounds. Plenum, New York, p. 2.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Karin Schmalzl
    • 1
    • 2
  • Gernot Deinzer
    • 3
  • Michael Malorny
    • 1
  • Dieter Strauch
    • 1
  1. 1.Institut für Theoretische PhysikUniversität RegensburgRegensburgGermany
  2. 2.Institut Laue-LangevinGrenoble Cedex 9France
  3. 3.Scuola Internazionale Superiore di Studi Avanzati (SISSA)TriesteItaly

Personalised recommendations