Skip to main content

DCA for the 2D Hubbard Model at T → 0

  • Conference paper
  • 561 Accesses

Abstract

We discuss single particle dynamics of the half-filled 2D Hubbard model at T → 0 calculated within the dynamical cluster approximation, using numerical renormalization group as non-perturbative cluster solver, which requires the use of parallel architectures with large number of processors and memory. In addition, fast temporal storage for large out-of-core matrices is needed. The results obtained indicate that the half-filled 2D Hubbard model at T → 0 is a paramagnetic insulator for all values of the Coulomb interaction U in strong contrast to weak-coupling theories.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998).

    Article  Google Scholar 

  2. J. Hubbard, Proc. R. Soc. London A276, 238(1963); M.C. Gutzwiller, Phys. Rev. Lett. 10, 59(1963); J. Kanamori, Prog. Theor. Phys. 30, 275(1963).

    Google Scholar 

  3. W. Metzner und D. Vollhardt, Phys. Rev. Lett. 62, 324(1989).

    Article  Google Scholar 

  4. T. Pruschke, M. Jarrell and J.K. Freericks, Adv. Phys. 42, 187 (1995)

    Article  Google Scholar 

  5. A. Georges, G. Kotliar, W. Krauth and M.J. Rozenberg, Rev. Mod. Phys. 68, 13(1996).

    Article  MathSciNet  Google Scholar 

  6. M. Jarrell and Th. Pruschke, Z. Phys. B90, 187 (1993).

    Article  Google Scholar 

  7. P.G.J. van Dongen, Phys. Rev. Lett. 67, 757 (1991); Phys. Rev. B50, 14016 (1994).

    Article  Google Scholar 

  8. R. Zitzler, Th. Pruschke, R. Bulla, Eur. Phys. J. B 27, 473 (2002).

    Article  Google Scholar 

  9. Y. Nagaoka, Phys. Rev. 147, 392 (1966).

    Article  Google Scholar 

  10. Th. Obermeier, Th. Pruschke and J. Keller, Phys. Rev. B56, R8479 (1997).

    Article  Google Scholar 

  11. D. Vollhardt, N. Blümer, K. Held, M. Kollar, J. Schlipf and M. Ulmke, Z. Phys. B103, 283(1997); M. Ulmke, Eur. Phys. J. B1, 301 (1998).

    Article  Google Scholar 

  12. E.H. Lieb and F.Y. Wu, Phys. Rev. Lett. 20, 1445 (1968).

    Article  Google Scholar 

  13. M.H. Hettler, A.N. Tahvildar-Zadeh, M. Jarrell, T. Pruschke and H. R. Krishnamurthy, Phys. Rev. B 58, 7475 (1998); M.H. Hettler, M. Mukherjee, M. Jarrell and H. R. Krishnamurthy, Phys. Rev. B 61, 12739 (2000).

    Article  Google Scholar 

  14. Th. Maier et al., Eur. Phys. J. B 13, 613 (2000); Th. Maier, M. Jarrell, Th. Pruschke, and J. Keller, Phys. Rev. Lett. 85, 1524 (2000).

    Article  Google Scholar 

  15. C. Huscroft, M. Jarrell, Th. Maier, S. Moukouri, and A.N. Tahvildarzadeh, Phys. Rev. Lett. 86, 139 (2001).

    Article  Google Scholar 

  16. S. Moukouri and M. Jarrell, to appear in Computer Simulations in Condensed Matter Physics VII, Eds. D.P. Landau, K. K. Mon, and H. B. Schuttler (Springer-Verlang, Heidelberg, Berlin, 2000).

    Google Scholar 

  17. M. Jarrell, Th. Maier, C. Huscroft, S. Moukouri, Phys. Rev. B, to appear, condmat/0108140.

    Google Scholar 

  18. K.G. Wilson, Rev. Mod. Phys. 47, 773 (1975); H.R. Krishna-murthy, J.W. Wilkins, and K.G. Wilson, Phys. Rev. B 21, 1003 (1980); ibid. 21, 1044 (1980).

    Article  Google Scholar 

  19. R. Bulla, Phys. Rev. Lett. 83, 136 (1999); R. Bulla, T.A. Costi, D. Vollhardt Phys. Rev. B64, 045103 (2001).

    Article  Google Scholar 

  20. Th. Pruschke et al. in “High Performance Computing in Science and Engineering”, S. Wagner, W. Hanke, A. Bode and F. Durst (eds.), Springer Verlag 2003, p. 327.

    Google Scholar 

  21. M. Jarrell, Phys. Rev. Lett. 69, 168 (1992).

    Article  Google Scholar 

  22. R. Bulla, A.C. Hewson and Th. Pruschke, J. Phys.: Condens. Matter 10, 8365(1998).

    Article  Google Scholar 

  23. The use of OpenMP turned out to be inefficient. A sizeable speedup could only be obtained up to 4 SMP processors; using more processors mainly increased the system time.

    Google Scholar 

  24. S. Moukouri and M. Jarrell, Phys. Rev. Lett. 87, 167010 (2001).

    Article  Google Scholar 

  25. T.D. Stanescu and P. Phillips, cond-mat/0301254 (2003).

    Google Scholar 

  26. C. Dahnken, M. Aichhorn, W. Hanke, E. Arrigoni, M. Potthoff, condmat/0309407 (2003).

    Google Scholar 

  27. N. E. Bickers, D. J. Scalapino, S. R. White, Phys. Rev. Lett. 62, 961 (1989).

    Article  Google Scholar 

  28. S. Wermbter, Phys. Rev. B55, 10149 (1997).

    Article  Google Scholar 

  29. C. Gröber, R. Eder and W. Hanke, Phys. Rev. B62, 4336 (2000).

    Article  Google Scholar 

  30. Th.A. Maier, Th. Pruschke and M. Jarrell, Phys. Rev. B66, 075102 (2002).

    Article  Google Scholar 

  31. J. Altmann, W. Brenig and A.P. Kampf, Eur. Phys. J. B18, 429(2000).

    Article  Google Scholar 

  32. Th. Pruschke and R. Zitzler, J. Phys.: Condens. Matter 15, 7867 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pruschke, T., Zitzler, R., Maier, T.A., Jarrell, M. (2005). DCA for the 2D Hubbard Model at T → 0. In: Wagner, S., Hanke, W., Bode, A., Durst, F. (eds) High Performance Computing in Science and Engineering, Munich 2004. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26657-7_28

Download citation

Publish with us

Policies and ethics