Advertisement

DCA for the 2D Hubbard Model at T → 0

  • Thomas Pruschke
  • Robert Zitzler
  • Thomas A. Maier
  • Mark Jarrell
Conference paper

Abstract

We discuss single particle dynamics of the half-filled 2D Hubbard model at T → 0 calculated within the dynamical cluster approximation, using numerical renormalization group as non-perturbative cluster solver, which requires the use of parallel architectures with large number of processors and memory. In addition, fast temporal storage for large out-of-core matrices is needed. The results obtained indicate that the half-filled 2D Hubbard model at T → 0 is a paramagnetic insulator for all values of the Coulomb interaction U in strong contrast to weak-coupling theories.

Keywords

Hubbard Model Hole Density Exact Diagonalization Density Matrix Renormalization Group Periodic Boundary Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998).CrossRefGoogle Scholar
  2. 2.
    J. Hubbard, Proc. R. Soc. London A276, 238(1963); M.C. Gutzwiller, Phys. Rev. Lett. 10, 59(1963); J. Kanamori, Prog. Theor. Phys. 30, 275(1963).Google Scholar
  3. 3.
    W. Metzner und D. Vollhardt, Phys. Rev. Lett. 62, 324(1989).CrossRefGoogle Scholar
  4. 4.
    T. Pruschke, M. Jarrell and J.K. Freericks, Adv. Phys. 42, 187 (1995)CrossRefGoogle Scholar
  5. 5.
    A. Georges, G. Kotliar, W. Krauth and M.J. Rozenberg, Rev. Mod. Phys. 68, 13(1996).CrossRefMathSciNetGoogle Scholar
  6. 6.
    M. Jarrell and Th. Pruschke, Z. Phys. B90, 187 (1993).CrossRefGoogle Scholar
  7. 7.
    P.G.J. van Dongen, Phys. Rev. Lett. 67, 757 (1991); Phys. Rev. B50, 14016 (1994).CrossRefGoogle Scholar
  8. 8.
    R. Zitzler, Th. Pruschke, R. Bulla, Eur. Phys. J. B 27, 473 (2002).CrossRefGoogle Scholar
  9. 9.
    Y. Nagaoka, Phys. Rev. 147, 392 (1966).CrossRefGoogle Scholar
  10. 10.
    Th. Obermeier, Th. Pruschke and J. Keller, Phys. Rev. B56, R8479 (1997).CrossRefGoogle Scholar
  11. 11.
    D. Vollhardt, N. Blümer, K. Held, M. Kollar, J. Schlipf and M. Ulmke, Z. Phys. B103, 283(1997); M. Ulmke, Eur. Phys. J. B1, 301 (1998).CrossRefGoogle Scholar
  12. 12.
    E.H. Lieb and F.Y. Wu, Phys. Rev. Lett. 20, 1445 (1968).CrossRefGoogle Scholar
  13. 13.
    M.H. Hettler, A.N. Tahvildar-Zadeh, M. Jarrell, T. Pruschke and H. R. Krishnamurthy, Phys. Rev. B 58, 7475 (1998); M.H. Hettler, M. Mukherjee, M. Jarrell and H. R. Krishnamurthy, Phys. Rev. B 61, 12739 (2000).CrossRefGoogle Scholar
  14. 14.
    Th. Maier et al., Eur. Phys. J. B 13, 613 (2000); Th. Maier, M. Jarrell, Th. Pruschke, and J. Keller, Phys. Rev. Lett. 85, 1524 (2000).CrossRefGoogle Scholar
  15. 15.
    C. Huscroft, M. Jarrell, Th. Maier, S. Moukouri, and A.N. Tahvildarzadeh, Phys. Rev. Lett. 86, 139 (2001).CrossRefGoogle Scholar
  16. 16.
    S. Moukouri and M. Jarrell, to appear in Computer Simulations in Condensed Matter Physics VII, Eds. D.P. Landau, K. K. Mon, and H. B. Schuttler (Springer-Verlang, Heidelberg, Berlin, 2000).Google Scholar
  17. 17.
    M. Jarrell, Th. Maier, C. Huscroft, S. Moukouri, Phys. Rev. B, to appear, condmat/0108140.Google Scholar
  18. 18.
    K.G. Wilson, Rev. Mod. Phys. 47, 773 (1975); H.R. Krishna-murthy, J.W. Wilkins, and K.G. Wilson, Phys. Rev. B 21, 1003 (1980); ibid. 21, 1044 (1980).CrossRefGoogle Scholar
  19. 19.
    R. Bulla, Phys. Rev. Lett. 83, 136 (1999); R. Bulla, T.A. Costi, D. Vollhardt Phys. Rev. B64, 045103 (2001).CrossRefGoogle Scholar
  20. 20.
    Th. Pruschke et al. in “High Performance Computing in Science and Engineering”, S. Wagner, W. Hanke, A. Bode and F. Durst (eds.), Springer Verlag 2003, p. 327.Google Scholar
  21. 21.
    M. Jarrell, Phys. Rev. Lett. 69, 168 (1992).CrossRefGoogle Scholar
  22. 22.
    R. Bulla, A.C. Hewson and Th. Pruschke, J. Phys.: Condens. Matter 10, 8365(1998).CrossRefGoogle Scholar
  23. 23.
    The use of OpenMP turned out to be inefficient. A sizeable speedup could only be obtained up to 4 SMP processors; using more processors mainly increased the system time.Google Scholar
  24. 24.
    S. Moukouri and M. Jarrell, Phys. Rev. Lett. 87, 167010 (2001).CrossRefGoogle Scholar
  25. 25.
    T.D. Stanescu and P. Phillips, cond-mat/0301254 (2003).Google Scholar
  26. 26.
    C. Dahnken, M. Aichhorn, W. Hanke, E. Arrigoni, M. Potthoff, condmat/0309407 (2003).Google Scholar
  27. 27.
    N. E. Bickers, D. J. Scalapino, S. R. White, Phys. Rev. Lett. 62, 961 (1989).CrossRefGoogle Scholar
  28. 28.
    S. Wermbter, Phys. Rev. B55, 10149 (1997).CrossRefGoogle Scholar
  29. 29.
    C. Gröber, R. Eder and W. Hanke, Phys. Rev. B62, 4336 (2000).CrossRefGoogle Scholar
  30. 30.
    Th.A. Maier, Th. Pruschke and M. Jarrell, Phys. Rev. B66, 075102 (2002).CrossRefGoogle Scholar
  31. 31.
    J. Altmann, W. Brenig and A.P. Kampf, Eur. Phys. J. B18, 429(2000).CrossRefGoogle Scholar
  32. 32.
    Th. Pruschke and R. Zitzler, J. Phys.: Condens. Matter 15, 7867 (2003).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Thomas Pruschke
    • 1
  • Robert Zitzler
    • 2
  • Thomas A. Maier
    • 3
  • Mark Jarrell
    • 4
  1. 1.Institute for Theoretical PhysicsUniversity of GöttingenGöttingenGermany
  2. 2.Center for Electronic Correlations and Magnetism Theoretical Physics III, Institute for PhysicsUniversity of AugsburgAugsburgGermany
  3. 3.Computer Science and Mathematics DivisionOak Ridge National LaboratoryOak RidgeUSA
  4. 4.Department of PhysicsUniversity of CincinnatiCincinnatiUSA

Personalised recommendations