Electron-Spin Interaction in High-Tc Superconductors

  • Zhongbing Huang
  • Werner Hanke
  • Enrico Arrigoni
Conference paper


In this paper, we study numerically the renormalization of the electron-spin (el-sp) interaction or vertex due to Coulomb correlations in a two-dimensional one-band Hubbard model with spin-fluctuation momentum transfer q = (π, π). Our simulations are based on a new numerically exact technique to extract the vertex, which is especially important for the physically relevant case, i.e., strong correlations, which cannot be controlled perturbatively. We find that the renormalized el-sp vertex decreases quite generally with increasing doping from the underdoped to the overdoped region. In the underdoped region, the corresponding effective pairing interaction increases strongly with lowering temperature in the weak- to intermediate-correlation regime. In contrast to this, it depends weakly on temperature in the strong-correlation regime. This behavior in the physically relevant strong-correlation case is due to a near cancellation between the temperature-driven enhancement of the spin susceptibility χ and the reduction of the el-sp interaction vertex. Thus, the spin-mediated d-wave attraction, which is peaked in weak coupling due to χ, is strongly reduced due to the el-sp vertex corrections for strong correlations.


Wave Packet Helium Atom Outer Electron Atomic Ground State Classical Phase Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998).CrossRefGoogle Scholar
  2. 2.
    D.J. Scalapino, Physics Reports 250, 329–365 (1995).CrossRefGoogle Scholar
  3. 3.
    P.W. Anderson, cond-mat/0201429.Google Scholar
  4. 4.
    V.G. Hadjiev, X.J. Zhou, T. Strohm, M. Cardona, Q.M. Lin, and C.W. Chu, Phys. Rev. B 58, 1043 (1998); for a review, see also M.L. Kulic, Physics Reports 338, 1–264 (2000).CrossRefGoogle Scholar
  5. 5.
    J.P. Franck, S. Harker, and J.H. Brewer, Phys. Rev. Lett. 71, 283 (1993).CrossRefGoogle Scholar
  6. 6.
    D. Shimada, Y. Shiina, A. Mottate, Y. Ohyagi, and N. Tsuda, Phys. Rev. B 51, R16495 (1995).Google Scholar
  7. 7.
    A. Lanzara, P.V. Bogdanov, X.J. Zhou, S.A. Keller, D.L. Feng, E.D. Lu, T. Yoshida, H. Eisaki, A. Fujimori, K. Kishio, J.-I. Shimoyama, T. Noda, S. Uchida, Z. Hussain, and Z.-X. Shen, Nature 412, 510 (2001).CrossRefGoogle Scholar
  8. 8.
    M. Eschrig and M.R. Norman, Phys. Rev. Lett. 85, 3261 (2000).CrossRefGoogle Scholar
  9. 9.
    M. Eschrig and M.R. Norman, Phys. Rev. B 67, 144503 (2003).CrossRefGoogle Scholar
  10. 10.
    Z.B. Huang, W. Hanke, E. Arrigoni, and D.J. Scalapino, Phys. Rev. B, 68, 220507(R) (2003).Google Scholar
  11. 11.
    R. Blankenbecler, D.J. Scalapino, and R.L. Sugar, Phys. Rev. D 24, 2278 (1981).CrossRefGoogle Scholar
  12. 12.
    J.R. Schrieffer, J. Low Temp. Phys. 99, 397 (1995).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Zhongbing Huang
    • 1
  • Werner Hanke
    • 1
  • Enrico Arrigoni
    • 1
  1. 1.Institut für Theoretische PhysikUniversität WürzburgWürzburgGermany

Personalised recommendations