Phasediagram and Scaling Properties of the Projected SO(5) Model in Three Dimensions

  • Martin Jöstingmeier
  • Ansgar Dorneich
  • Enrico Arrigoni
  • Werner Hanke
  • Shou-Cheng Zhang
Conference paper


We study the scaling properties of the quantum projected SO(5) model in three dimensions by means of a highly accurate Quantum-Monte-Carlo analysis. Within the parameter regime studied (temperature and system size), we show that the scaling behavior is consistent with a SO(5)-symmetric critical behavior in the numerically accessible region. This holds both when the symmetry breaking is caused by quantum fluctuations only as well as when also the static (mean-field) symmetry is moderately broken. We argue that possible departure away from the SO(5) - symmetric scaling occurs only in an extremely narrow parameter regime, which is inaccessible both experimentally and numerically.


Inelastic Neutron Scattering Ultrasoft Pseudopotentials Calculated Lattice Constant 1This Work Linearize Augment Plane Wave Method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S.-C. Zhang, Science 275, 1089 (1997).CrossRefMathSciNetGoogle Scholar
  2. 2.
    A. Dorneich, M. Jöstingmeier, E. Arrigoni, C. Dahnken, T. Eckl, W. Hanke, S. C. Zhang, and M. Troyer, in Proceedings of the First Joint HLRB and KONWIHR Result and Reviewing Workshop, Garching, Oct. 2002, edited by S. Wagner, W. Hanke, A. Bode, and F. Durst (Springer, Berlin, Heidelberg, New York, 2003).Google Scholar
  3. 3.
    E. Demler, W. Hanke, and S. C. Zhang, to appear in Rev. Mod. Phys. (unpublished).Google Scholar
  4. 4.
    R. Eder, A. Dorneich, M. G. Zacher, W. Hanke, and S.-C. Zhang, Phys. Rev. B 59, 561 (1999).CrossRefGoogle Scholar
  5. 5.
    E. Demler, H. Kohno, and S.-C. Zhang, Phys. Rev. B 58, 5719 (1998).CrossRefGoogle Scholar
  6. 6.
    X. Hu, Phys. Rev. Lett. 87, 057004 (2001).CrossRefGoogle Scholar
  7. 7.
    D. P. Arovas, A. J. Berlinsky, C. Kallin, and S.-C. Zhang, Phys. Rev. Lett. 79, 2871 (1997).CrossRefGoogle Scholar
  8. 8.
    E. Arrigoni and W. Hanke, Phys. Rev. Lett. 82, 2115 (1999).CrossRefGoogle Scholar
  9. 9.
    E. Altman and A. Auerbach, Phys. Rev. B 65, 104508 (2002).CrossRefGoogle Scholar
  10. 10.
    S.-C. Zhang, J.-P. Hu, E. Arrigoni, W. Hanke, and A. Auerbach, Phys. Rev. B 60, 13070 (1999).CrossRefGoogle Scholar
  11. 11.
    E. Arrigoni and W. Hanke, Phys. Rev. B 62, 11770 (2000).CrossRefGoogle Scholar
  12. 12.
    A. Dorneich, W. Hanke, E. Arrigoni, M. Troyer, and S. C. Zhang, Phys. Rev. Lett. 88, 057003 (2002).CrossRefGoogle Scholar
  13. 13.
    M. E. Fisher, M. N. Barber, and D. Jasnow, Phys. Rev. A 8, 1111 (1973).CrossRefGoogle Scholar
  14. 14.
    A. Aharony, Phys. Rev. Lett. 88, 059703 (2002).CrossRefGoogle Scholar
  15. 15.
    P. Calabrese, A. Pelissetto, and E. Vicari, cond-mat/0203533 (unpublished).Google Scholar
  16. 16.
    P. Calabrese, A. Pelissetto, and E. Vicari, Phys. Rev. B 67, 054505 (2002).CrossRefMathSciNetGoogle Scholar
  17. 17.
    A. Pelissetto and E. Vicari, Phys. Rep. 368, 549 (2000).CrossRefMathSciNetGoogle Scholar
  18. 18.
    W. Kohn and J. M. Luttinger, Phys. Rev. Lett. 15, 524 (1965).CrossRefMathSciNetGoogle Scholar
  19. 19.
    B. I. Halperin, T. C. Lubensky, and S.-K. Ma, Phys. Rev. Lett. 32, 292 (1974).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Martin Jöstingmeier
    • 1
  • Ansgar Dorneich
    • 1
  • Enrico Arrigoni
    • 2
  • Werner Hanke
    • 1
  • Shou-Cheng Zhang
    • 3
  1. 1.Institute for Theoretical Physics and AstrophysicsUniversity of WürzburgWürzburg
  2. 2.Institute for Theoretical PhysicsTechnical University of GrazGrazAustria
  3. 3.Department of PhysicsStanford UniversityStanfordUSA

Personalised recommendations