Advertisement

Ab-Initio Molecular Dynamics Simulations of Hydrous Silicate Systems

  • Markus Pöhlmann
  • Andreas Meyer
  • Magali Benoit
  • Walter Kob
Conference paper

Abstract

We use ab initio molecular dynamics simulations in order to understand the dissolution and diffusion of water in bulk amorphous silica. These simulations are driven in the liquid state at temperatures where the systems can be brought to equilibrium. In the equilibrated state we are able to investigate hydrogen diffusion mechanisms in the time window present days' molecular dynamics simulations can offer. Quenches of selected configurations to ambient temperatures allow comparisons of the obtained structure with experimental results. In this article we describe the setup of such kind of simulation on the Hitachi SR8000-F1 and give a brief overview of some results that have already been presented in two scientific articles [1, 2].

Keywords

Maximum Entropy Method Plane Mode Convergence Study Imaginary Time Quantum Monte Carlo 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Pöhlmann, M. Benoit, and W. Kob. Submitted to Phys. Rev. BGoogle Scholar
  2. 2.
    M. Pöhlmann, H. Schober, M. Benoit, and W. Kob. Proceedings of the 2004 Nanotechnology Conference and Trade Show, Boston (Ma), USA (The Nano Science and Technology Institute, Cambridge, 2004)Google Scholar
  3. 3.
    D. B. Dingwell, Science 273, 1054 (1996)Google Scholar
  4. 4.
    C. R. Helms and E H. Poindexter. Rep. Prog. Phys. 57 791 (1994)CrossRefGoogle Scholar
  5. 5.
    A.F. Holleman and E. Wiberg, Lehrbuch der Anorganischen Chemie 101. Auflage (Walter de Gruyter, Berlin, 1995)Google Scholar
  6. 6.
    P. F. McMillan, Rev. Mineral. 30, 131 (1994)Google Scholar
  7. 7.
    S. C. Kohn, Mineral. Magazine 64, 389 (2000)CrossRefGoogle Scholar
  8. 8.
    M. Benoit, S. Ispas, P. Jund and R. Jullien. Eur. Phys. J. B 13, 631 (2000)CrossRefGoogle Scholar
  9. 9.
    M. J. Horbach and W. Kob. Phys. Rev. B 60, 3169 (1999)CrossRefGoogle Scholar
  10. 10.
    Vollmayr, K., Kob, W., Binder, K. Phys. Rev. B 54, 15808 (1996)CrossRefGoogle Scholar
  11. 11.
    R. Car and M. Parrinello. Phys. Rev. Lett. 55, 2471 (1985)CrossRefGoogle Scholar
  12. 12.
    CPMD Version 3.3, J. Hutter, A. Alavi, T. Deutsch, M. Bernasconi, S. Goedecker, D. Marx, M. Tuckerman, and M. Parrinello. MPI für Festkörperforschung and IBM Zürich Research Laboratory (1995–99)Google Scholar
  13. 13.
    W. Kohn and L. Sham, Phys. Rev. A 140, 1133 (1965)CrossRefMathSciNetGoogle Scholar
  14. 14.
    J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 865 (1996)CrossRefGoogle Scholar
  15. 15.
    N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 (1991)CrossRefGoogle Scholar
  16. 16.
    A. D. Becke. Phys. Rev. A 38, 3098 (1988)CrossRefGoogle Scholar
  17. 17.
    C. Lee, W. Yang, and R. G. Parr. Phys. Rev. B 37, 785 (1988)CrossRefGoogle Scholar
  18. 18.
    S. Kurth, J. P. Perdew, and P. Blaha. Int. J. Quantum Chem. 75, 889 (1999)CrossRefGoogle Scholar
  19. 19.
    J. Hutter. Personal communication.Google Scholar
  20. 20.
    G. J. Martyna, M. E. Tuckerman, D. J. Tobias, and M. L. Klein, Mol. Phys. 87, 1117 (1996)CrossRefGoogle Scholar
  21. 21.
    G. J. Martyna, M. E. Tuckerman, and M. L. Klein, J. Chem. Phys. 97, 2635 (1996)CrossRefGoogle Scholar
  22. 22.
    M. E. Tuckerman and M. Parrinello, J. Chem. Phys. 101, 1302 (1994)CrossRefGoogle Scholar
  23. 23.
    T. Bakos, S. N. Rashkeev, and S. T. Pantelides. Phys. Rev. Lett. 88, 0555081 (2002)CrossRefGoogle Scholar
  24. 24.
    J. Robertson. The physics and technology of amorphous SiO 2. p. 91. Roderick Devine Ed. (Plenum Press, New York, 1988)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Markus Pöhlmann
    • 1
  • Andreas Meyer
    • 1
  • Magali Benoit
    • 2
  • Walter Kob
    • 2
  1. 1.Physik-Department E13Technische Universität MünchenGarchingGermany
  2. 2.Laboratoire des VerresUniversité Montpellier IIMontpellier Cedex 05France

Personalised recommendations