Skip to main content

Ab-Initio Molecular Dynamics Simulations of Hydrous Silicate Systems

  • Conference paper
High Performance Computing in Science and Engineering, Munich 2004
  • 552 Accesses

Abstract

We use ab initio molecular dynamics simulations in order to understand the dissolution and diffusion of water in bulk amorphous silica. These simulations are driven in the liquid state at temperatures where the systems can be brought to equilibrium. In the equilibrated state we are able to investigate hydrogen diffusion mechanisms in the time window present days' molecular dynamics simulations can offer. Quenches of selected configurations to ambient temperatures allow comparisons of the obtained structure with experimental results. In this article we describe the setup of such kind of simulation on the Hitachi SR8000-F1 and give a brief overview of some results that have already been presented in two scientific articles [1, 2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Pöhlmann, M. Benoit, and W. Kob. Submitted to Phys. Rev. B

    Google Scholar 

  2. M. Pöhlmann, H. Schober, M. Benoit, and W. Kob. Proceedings of the 2004 Nanotechnology Conference and Trade Show, Boston (Ma), USA (The Nano Science and Technology Institute, Cambridge, 2004)

    Google Scholar 

  3. D. B. Dingwell, Science 273, 1054 (1996)

    Google Scholar 

  4. C. R. Helms and E H. Poindexter. Rep. Prog. Phys. 57 791 (1994)

    Article  Google Scholar 

  5. A.F. Holleman and E. Wiberg, Lehrbuch der Anorganischen Chemie 101. Auflage (Walter de Gruyter, Berlin, 1995)

    Google Scholar 

  6. P. F. McMillan, Rev. Mineral. 30, 131 (1994)

    Google Scholar 

  7. S. C. Kohn, Mineral. Magazine 64, 389 (2000)

    Article  Google Scholar 

  8. M. Benoit, S. Ispas, P. Jund and R. Jullien. Eur. Phys. J. B 13, 631 (2000)

    Article  Google Scholar 

  9. M. J. Horbach and W. Kob. Phys. Rev. B 60, 3169 (1999)

    Article  Google Scholar 

  10. Vollmayr, K., Kob, W., Binder, K. Phys. Rev. B 54, 15808 (1996)

    Article  Google Scholar 

  11. R. Car and M. Parrinello. Phys. Rev. Lett. 55, 2471 (1985)

    Article  Google Scholar 

  12. CPMD Version 3.3, J. Hutter, A. Alavi, T. Deutsch, M. Bernasconi, S. Goedecker, D. Marx, M. Tuckerman, and M. Parrinello. MPI für Festkörperforschung and IBM Zürich Research Laboratory (1995–99)

    Google Scholar 

  13. W. Kohn and L. Sham, Phys. Rev. A 140, 1133 (1965)

    Article  MathSciNet  Google Scholar 

  14. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 865 (1996)

    Article  Google Scholar 

  15. N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 (1991)

    Article  Google Scholar 

  16. A. D. Becke. Phys. Rev. A 38, 3098 (1988)

    Article  Google Scholar 

  17. C. Lee, W. Yang, and R. G. Parr. Phys. Rev. B 37, 785 (1988)

    Article  Google Scholar 

  18. S. Kurth, J. P. Perdew, and P. Blaha. Int. J. Quantum Chem. 75, 889 (1999)

    Article  Google Scholar 

  19. J. Hutter. Personal communication.

    Google Scholar 

  20. G. J. Martyna, M. E. Tuckerman, D. J. Tobias, and M. L. Klein, Mol. Phys. 87, 1117 (1996)

    Article  Google Scholar 

  21. G. J. Martyna, M. E. Tuckerman, and M. L. Klein, J. Chem. Phys. 97, 2635 (1996)

    Article  Google Scholar 

  22. M. E. Tuckerman and M. Parrinello, J. Chem. Phys. 101, 1302 (1994)

    Article  Google Scholar 

  23. T. Bakos, S. N. Rashkeev, and S. T. Pantelides. Phys. Rev. Lett. 88, 0555081 (2002)

    Article  Google Scholar 

  24. J. Robertson. The physics and technology of amorphous SiO 2. p. 91. Roderick Devine Ed. (Plenum Press, New York, 1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pöhlmann, M., Meyer, A., Benoit, M., Kob, W. (2005). Ab-Initio Molecular Dynamics Simulations of Hydrous Silicate Systems. In: Wagner, S., Hanke, W., Bode, A., Durst, F. (eds) High Performance Computing in Science and Engineering, Munich 2004. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26657-7_18

Download citation

Publish with us

Policies and ethics