Theoretical Studies of Vanadium Complexes: Reactivities and 51V NMR Chemical Shifts in Solution

  • Michael Bühl
  • Rachel Schurhammer
  • Petra Imhof
Conference paper


We present a density functional study of structures and reactivities of [VO(O2)2(Im)], a model peroxovanadium(V) complex with a biogenic ligand, and its potential use as catalyst in biomimetic oxidations of organic substrates. The mechanism of olefin epoxidation mediated by this complex is studied in detail for the gas-phase. In addition, structures and energetics of key intermediates in the catalytic cycle are simulated in solution using the Car-Parrinello molecular dynamics (CPMD) technique. The rate-limiting step is indicated to be oxo transfer from a peroxo moiety of the catalyst to the substrate. In a second part, the standard used for 51V NMR spectroscopy, VOCl3, is modeled as neat liquid by means of CPMD simulations. According to preliminary results for the magnetic shieldings averaged along the trajectory, the 51V nucleus is deshielded by ca. 40 ppm.


Electronic Structure Calculation Transient Absorption Spectrum Semiconductor Interface Quantum Dissipative System Bath Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Butler, A.; Baldwin, A. H. Struct. Bond. 1997, 89, 109.Google Scholar
  2. 2.
    a) Rehder, D. Coord. Chem. Rev. 1999, 182, 297–322; b) Rehder, D.; Santoni, G.; Licini, G. M.; Schulzke, C.; Meier, B. Coord. Chem. Rev. 2003, 237, 53–63.CrossRefGoogle Scholar
  3. 3.
    D. C. Crans, A. D. Keramidas, H. Hoover-Litty, O. P. Anderson, M. M. Miller, L. M. Lemoine, S. Pleasic-Williams, M. Vandenberg, A. J. Rossomando, L. J. Sweet, J. Am. Chem. Soc. 1997, 23, 5447.CrossRefGoogle Scholar
  4. 4.
    J. Mukherjee, S. Ganguly, M. Bhattacharjee, Ind. J. Chem. A 1996, 35, 471.Google Scholar
  5. 5.
    H. Glas, E. Herdtweck, G. R. J. Artus, W. R. Thiel, Inorg. Chem. 1998, 37, 3644.CrossRefGoogle Scholar
  6. 6.
    M. Bühl, F. T. Mauschick, R. Schurhammer, in: High Performance Computing in Science and Engineering, Munich 2002, S. Wagner, W. Hanke, A. Bode, F. Durst (Eds.), Springer Verlag, Berlin, 2003, p.189.Google Scholar
  7. 7.
    A. Hroch, G. Gemmecker, W. R. Thiel, Eur. J. Inorg. Chem. 2000, 1107.Google Scholar
  8. 8.
    M. Bühl, M. Parrinello, Chem. Eur. J. 2001, 7, 4487.CrossRefGoogle Scholar
  9. 9.
    R. Car, M. Parrinello, Phys. Rev. Lett. 1985, 55, 2471.CrossRefGoogle Scholar
  10. 10.
    a) N. Troullier, J. L. Martins, Phys. Rev. B 1991, 43, 1993; b) L. Kleinman, D. M. Bylander, Phys. Rev. Lett. 1982, 48, 1425.CrossRefGoogle Scholar
  11. 11.
    The relatively large value for the fictitious electronic mass, which allows the use of a longer time step, is facilitated by the fact that the molecular vibrations in VOCl3 occur at lower frequencies than those in the other vanadates. All CPMD simulations were stable with the chosen parameters.Google Scholar
  12. 12.
    M. Bühl, in: Calculation of NMR and ESR Parameters. Theory and Applications. M. Kaupp, M. Bühl, V. G. Malkin (Eds.), Wiley-VCH, Weinheim, 2004, p. 421 ff.Google Scholar
  13. 13.
    a) D. V. Deubel, J. Sundermeyer, G. Frenking, J. Am. Chem. Soc. 2000, 122, 10101; b) P. Gisdakis, I. V. Yudanov, N. Rösch, Inorg. Chem. 2001, 40, 3755.CrossRefGoogle Scholar
  14. 14.
    The energy is lower because in the gas phase, the transition state does not connect to the separated reactants, but to the H-bonded complex of both, which is a strongly stabilized ion-dipole complex; TS23 lies 8.3 kcal/mol above this complex (BP86 + ZPE).Google Scholar
  15. 15.
    M. Bühl, R. Schurhammer, P. Imhof, J. Am. Chem. Soc. 2004, 126, 3310.CrossRefGoogle Scholar
  16. 16.
    a) M. Bühl, F. T. Mauschick, Phys. Chem. Chem. Phys. 2002, 4, 5508; b) M. Bühl, J. Phys. Chem. A. 2002, 106, 10505.CrossRefGoogle Scholar
  17. 17.
    M. P. Allen, D. J. Tildesley, Computer Simulation of Liquids, Clarendon Press, Oxford, 1987.Google Scholar
  18. 18.
    See reference D. J. Tildesley, Computer Simulation of Liquids, Clarendon Press, Oxford, 1987 17 for the definition of g(r).Google Scholar
  19. 19.
    Evidence for such a possible increase in coordination number can be found in the solid state, e.g. for a carbonyl adduct of VOCl3 (T. A. Kabanos, A. D. Keramidas, A. Papaioannou, A. Terzis, Inorg. Chem. 1994, 33, 845) or in form of the VOCl4 anion (e.g. G. Frenzen, W. Massa, T. Ernst, K. Dehnicke, Z. Naturforsch. 1990, 45B, 1393).CrossRefGoogle Scholar
  20. 20.
    This number corresponds to the average number of V atoms in a sphere of radius 6.2 Å, as obtained from integration of the gvv (r) function in Fig. 7a.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Michael Bühl
    • 1
  • Rachel Schurhammer
    • 1
  • Petra Imhof
    • 1
  1. 1.Max-Planck-Institut für KohlenforschungMülheim an der RuhrGermany

Personalised recommendations