Flow Induced Noise Computation on Hitachi SR8000-F1

  • Max Escobar
  • Irfan Ali
  • Frank Hülsemann
  • Manfred Kaltenbacher
  • Stefan Becker
Conference paper


Pair Correlation Function Vanadium Complex Magnetic Shieldings Neat Liquid High Performance Computing Facility 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    http://www.mpcci.org/, 2003.Google Scholar
  2. 2.
    http://www.mpi-forum.org/, 2003.Google Scholar
  3. 3.
    F. Durst and M. Schäfer, A Parallel Block-Structured Multigrid Method for the Prediction of Incompressible Flows, Int. J. Num. Methods Fluids 22 (1996), 549–565.CrossRefGoogle Scholar
  4. 4.
    J.E. Ffowcs-Williams and D.L. Hawkings, Sound radiation from turbulence and surfaces in arbitrary motion, Phil. Trans. Roy. Soc. A 264 (1969), 321–342.Google Scholar
  5. 5.
    M. Glück, Ein Beitrag zur numerischen Simulation von Fluid-Structure-Interaction-Grundlagenuntersuchungen und Anwendung auf Membrantragwerke, Ph.D. thesis, University of Erlangen, Institute of Fluid Mechanics, Erlangen, 2002.Google Scholar
  6. 6.
    M.S. Howe, Theory of Vertex Sound, Cambridge University Press, 2002.Google Scholar
  7. 7.
    T. J. R. Hughes, The finite elemente method, 1 ed., Prentice-Hall, New Jersey, 1987.Google Scholar
  8. 8.
    M. Kaltenbacher and S. Reitzinger, Algebraic MultiGrid Methods for Nodal and Edge based Discretizations of Maxwell's Equations, International Compumag Society Newsletter 9 (2002), no. 3, 15–23.Google Scholar
  9. 9.
    M.J. Lighthill, On sound generated aerodynamically i. general theory, Proc. Roy. Soc. Lond. (1952), no. A 211, 564–587.MATHMathSciNetGoogle Scholar
  10. 10.
    _____, On sound generated aerodynamically ii. turbulence as a source of sound, Proc. Roy. Soc. Lond. (1954), no. A 222, 1–22.MATHMathSciNetGoogle Scholar
  11. 11.
    M. Perić, A Finite Volume Method for the Prediction of Three-Dimesional Fluid Flow in Complex Ducts, Ph.D. thesis, University of London, 1985.Google Scholar
  12. 12.
    A. Quarteroni and A. Valli, Domain decomposition methods for partial differential equations, Oxford University Press, 1999.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Max Escobar
    • 1
  • Irfan Ali
    • 2
  • Frank Hülsemann
    • 3
  • Manfred Kaltenbacher
    • 1
  • Stefan Becker
    • 2
  1. 1.Dept. of Sensoer Technology (LSE)University of Erlangen-NurembergErlangenGermany
  2. 2.Institute of Fluid Mechanics (LSTM)University of Erlangen-NurembergErlangenGermany
  3. 3.Dept. of System Simulation (LSS)University of Erlangen-NurembergErlangenGermany

Personalised recommendations