Interactive CFD Simulation by Coupling Supercomputers with Virtual Reality

  • Petra Hardt
  • Siegfried Kühner
  • Ernst Rank
  • Oliver Wenisch
Conference paper


Computational Fluid Dynamics (CFD) simulations in a Virtual Reality (VR) environment allow a very flexible analysis of complex flow phenomena, supporting the planning process of a building with respect to fluid mechanical aspects. In this paper a prototype application of a CFD-based computational steering system is presented.

Simple geometries can be modified interactively in a Virtual Reality system consisting of a stereoscopic projection unit and a wand device and are sent to a high performance supercomputer. The underlying CFD simulation is performed by a Lattice-Boltzmann kernel, which shows excellent parallel efficiency. State-of-the-art visualization techniques allow for an intuitive investigation of the transient nature of the corresponding flow field.

The area of application primarily covers the analysis of indoor air flow and the optimization of Heat Ventilation Air Conditioning (HVAC) systems.


Shear Layer Large Eddy Simulation Direct Numerical Simulation Turbulent Boundary Layer Computational Fluid Dynamics Simulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bryson, S., Levit, C.: The Virtual Windtunnel: An environment for the exploration of three-dimensional unsteady fluid flow, IEEE Computer graphics and Applications, 12(4),25–34 (1992)CrossRefGoogle Scholar
  2. 2.
    Connell, M., Tullberg, O., Kettil, P., Wiberg, N.-E.: Interactive design and investigation of physical bridges using virtual models, Proceedings of the first MIT Conference on Computational Fluid and solid mechanics, Cambridge MA, USA (2001)Google Scholar
  3. 3.
    Klimetzek, F.: Virtual Intuitive Simulation Testbed VISiT, Daimler Chrysler AG, Research and Development (2001)Google Scholar
  4. 4.
    Kühner, S., Krafczyk, M.: Virtual Fluids-An environment for integral visualization of CAD and simulation data, Proceedings of 5th international fall workshop ”Vision, Modeling and Visualization 2000”, Saarbrücken, Germany (2000)Google Scholar
  5. 5.
    Kühner, S., Rank, E., Krafczyk, M.: Efficient reduction of 3D simulation results based on spacetree data structures for data analysis in Virtual Reality environments, Applied Virtual Reality in Engineering and Construction, Gothenburg, Sweden (2001)Google Scholar
  6. 6.
    Mulder, J. D., Wijk, J. van, Liere, R. van: A Survey of Computational Steering Environments, Future generation computer systems, 15(2), (1999)Google Scholar
  7. 7.
    Rank, E., Crouse, B., Treeck, C. van: Numerical Simulation of Air Flow for Civil Engineering Constructions on the basis of a product data model, The Ninth International Conference on Computing in Civil and Building Engineering, Taipei, Taiwan (2002)Google Scholar
  8. 8.
    Roettger, S., Schulz, M., Bartelheimer, W., Ertl, Th.: Flow Visualization on Hierarchical Cartesian Grids, Lecture Notes in Computational Science and Engineering-Proceedings of 3rd International FORTWIHR Conference on HPSEC, 21:139–146, Springer Verlag (2002)Google Scholar
  9. 9.
    Shahnawaz, V., Vance, J., Kutti, S.: Visualization of Post-processed CFD Data in a Virtual Environment, ASME Design Engineering Technical Conferences, Las Vegas, USA (1999)Google Scholar
  10. 10.
    Svidt, K., Berg, B., Nielsen, Th. D.: Initial Studies on Virtual Reality Visualisation of 3d Airflow in ventilated livestock buildings, Applied Virtual Reality in Engineering and Construction, Gothenburg, Sweden (2001)Google Scholar
  11. 11.
    Wesche, G.: Three-dimensional visualization of fluid dynamics on the Responsive Workbench, Future generation computer systems, 15:469–475 (1999)CrossRefGoogle Scholar
  12. 12.
    Wössner, U., Rantzau, D., Rainer, D.: Interactive Simulation Steering in VR and Handling large Datasets, IEEE Virtual Environments 98 (1998)Google Scholar
  13. 13.
    Krafczyk, M.: Gitter-Boltzmann Methoden: Von der Theorie zur Anwendung, Professoral dissertation, LS Bauinformatik, TU München (2001)Google Scholar
  14. 14.
    Succi, S.: The Lattice Boltzmann equation for fluid dynamics and beyond, Clarendon Press, Oxford (2001)Google Scholar
  15. 15.
    d'Humières, D., Ginzburg, I., Krafczyk, M., Lallemand, P., Luo, L.: 3D Multiple-Relaxation-Time LBE Models, Phil.Trans.R.Soc.Lond. A 360 (2002)Google Scholar
  16. 16.
    Hou, S., et al.: A Lattice-Boltzmann subgrid model for high Reynolds number flows, Fields Inst. Comm., (6):151–165 (1996)MATHGoogle Scholar
  17. 17.
    Filipova, O., Hänel, D.: A novel Lattice BGK approach for low mach number combustion, Computational Physics, (158):139–160 (2000)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Jaksch, S.: Facettierung dreidimensionaler Gebiete und Gittergenerierung unter Verwendung von Octree-Datenstrukturen, Lehrstuhl für Bauinformatik, TU München (2001)Google Scholar
  19. 19.
    Kühner, S.: Virtual Reality basierte Analyse und interaktive Steuerung von Strömungssimulationen im Bauingenieurwesen. PhD Thesis, Lehrstuhl für Bauinformatik, TU München (submitted)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Petra Hardt
    • 1
  • Siegfried Kühner
    • 1
  • Ernst Rank
    • 1
  • Oliver Wenisch
    • 2
  1. 1.Lehrstuhl für BauinformatikMünchen
  2. 2.Leibniz-RechenzentrumMüunchen

Personalised recommendations