Advertisement

Large-Eddy-Simulation of an Airfoil at Re = 20000 Using Cartesian Grids

  • Gary Evans
  • Sven Eisenbach
  • Rainer Friedrich
Conference paper

Abstract

An efficient approach for the numerical simulation of arbitrary shaped bodies using cartesian grids is presented. The method is applied to the simulation of an airfoil at Re=20 000 and high angle of attack. Results of different flow configurations are compared.

Keywords

Computational Fluid Dynamics Virtual Reality Computational Fluid Dynamics Simulation Scene Graph Apply Virtual Reality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H.-J. Bungartz, A. Frank, F. Meier, T. Neunhoeffer, and S. Schulte. Efficient treatment of complicated geometries and moving interfaces for CFD problems. In H.-J. Bungartz, F. Durst, and C. Zenger, editors, High Performance Scientific and Engineering Computing, volume 8 of Lecture Notes in Computational Science and Engineering, pages 113–123. Springer Verlag, Berlin, 1999.Google Scholar
  2. 2.
    M. Germano, U. Piomelli, P. Moin, and W.H. Cabot. A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A, 3(7):1760–1765, 1991.CrossRefGoogle Scholar
  3. 3.
    J. Gullbrand, X.S. Bai, and L. Fuchs. High order boundary corrections for computation of turbulent flows. In C. Taylor and J.T. Cross, editors, Numerical Methods in Laminar and Turbulent Flow, volume 10, pages 141–152, Swansea, Großbritannien, 1997. Pineridge Press.Google Scholar
  4. 4.
    C.W. Hirt, B.D. Nichols, and N.C. Romero. Sola — a numerical solution algorithm for transient fluid flows. Technical Report LA-5852, Los Alamos Sci. Lab., Los Alamos, 1975.Google Scholar
  5. 5.
    T. Lerche and U.Ch. Dallmann. Das prinzipexperiment costwing. i: Dokumentation der aufbauphase. Interner Bericht IB 223-99A04, DLR-Institut für Strömungsmechanik, Göttingen, April 1999.Google Scholar
  6. 6.
    C. Mellen, J. Fröhlich, and W. Rodi. Lessons from the european lesfoil project on les of flow around an airfoil. In 40th AIAA Aerospace Sciences Meeting and Exhibit, number AIAA 2002-0111, Reno, USA, 2002.Google Scholar
  7. 7.
    J.H. Spurk. Strömungslehre: Einführung in die Theorie der Strömungen. Springer Verlag, Berlin, 1989.Google Scholar
  8. 8.
    Frederic Tremblay. Direct and large-eddy simulation of flow around a circular cylinder at subcritical Reynolds numbers. PhD thesis, TU München, 2001.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Gary Evans
    • 1
  • Sven Eisenbach
    • 1
  • Rainer Friedrich
    • 1
  1. 1.Fachgebiet StrömungsmechanikTU MünchenGarchingGermany

Personalised recommendations