Advertisement

Abstract

Spin-polarized low energy electron microscopy is one of several methods for the study of the magnetic microstructure of surfaces and thin films on surfaces. It is a non-scanning, full-field imaging method that allows much faster image aquisition than scanning methods, provided that the electrons are elastically backscattered along or close to the optical axis of the instrument. This is the case in single crystals and epitaxial films or films with strong fiber texture. After a brief introduction (6.1), this chapter first discusses the physics of the electron beam-specimen interaction that is the basis of SPLEEM (6.2). This is followed by a brief description of the experimental aspects of the method (6.3). The remaining part is devoted to the applications of SPLEEM mainly in the study of thin film systems (6.4). The final section (6.5) briefly summarizes the possibilities and limitations of the method.

Keywords

Easy Axis Interlayer Coupling Space Thickness Magnetic Domain Structure Perpendicular Anisotropy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.J. Celotta, D.T. Pierce, G.-C. Wang, S.D. Bader, and G.P. Felcher, Phys. Rev. Lett. 43, 728 (1979).CrossRefGoogle Scholar
  2. 2.
    M.S. Altman, H. Pinkvos, J. Hurst, H. Poppa, G. Marx, and E. Bauer, Mat. Res. Soc. Symp. Proc. 232, 125 (1991).Google Scholar
  3. 3.
    J.C. Slater, Phys. Rev. 81, 385 (1951).CrossRefGoogle Scholar
  4. 4.
    P. Hammerling, W.W. Shine, and B. Kivel, J Appl. Phys. 28, 760 (1957).CrossRefGoogle Scholar
  5. 5.
    B. Kivel, Phys. Rev. 116, 926 (1959).CrossRefGoogle Scholar
  6. 6.
    E. Bauer and H.N. Browne, in: Atomic Collision Processes, edit. by M. R. C. McDowell (North-Holland, Amsterdam, 1964), p. 16.Google Scholar
  7. 7.
    H.N. Browne and E. Bauer, unpublished work.Google Scholar
  8. 8.
    P.A.M. Dirac, Proc. Cambridge Phil. Soc. 26, 376 (1930).CrossRefGoogle Scholar
  9. 9.
    J.C. Slater, T.M. Wilson, and J.H. Wood, Phys. Rev. 179, 28 (1969).CrossRefGoogle Scholar
  10. 10.
    J. Kessler: Polarized Electrons (Springer, Berlin, 1985).Google Scholar
  11. 11.
    R. Feder, J. Phys. C: Solid State Phys. 14, 2049 (1981).CrossRefGoogle Scholar
  12. 12.
    R. Feder, Phys. Scripta T4, 47 (1983).Google Scholar
  13. 13.
    R. Feder and H. Pleyer, Surf. Sci. 117, 285 (1982).CrossRefGoogle Scholar
  14. 14.
    C.L. Fu and A.J. Freeman, J. Magn. Magn. Mater. 69, L1 (1987).CrossRefGoogle Scholar
  15. 15.
    G. Waller and U. Gradmann, Phys. Rev B 26, 6330 (1982).CrossRefGoogle Scholar
  16. 16.
    E. Tamura, R. Feder, G. Waller, and U. Gradmann, Phys. Stat. Sol. (b) 157, 627 (1990).Google Scholar
  17. 17.
    E. Tamura and R. Feder, Solid State Comm. 44, 1101 (1982).CrossRefGoogle Scholar
  18. 18.
    A. Ormeci, B.M. Hall, and D.L. Mills, Phys. Rev. B 42, 4524 (1990).CrossRefGoogle Scholar
  19. 19.
    A. Ormeci, B.M. Hall, and D.L. Mills, Phys. Rev. B 44, 12369 (1991).CrossRefGoogle Scholar
  20. 20.
    K. Wagner, N. Weber, H.J. Elmers, and U. Gradmann, J. Magn. Magn. Mater. 167, 21 (1997).CrossRefGoogle Scholar
  21. 21.
    M. Plihal, D.L. Mills, H.J. Elmers, and U. Gradmann, Phys. Rev. B 51, 8193 (1995).CrossRefGoogle Scholar
  22. 22.
    R. Feder, S.F. Alvarado, E. Tamura, and E. Kisker, Surf. Sci 127, 83 (1983).CrossRefGoogle Scholar
  23. 23.
    G.A. Mulhollan, A.R. Koeymen, D.M. Lind, F.B. Dunning, E. Tamura, and R. Feder, Surf. Sci. 204, 503 (1988).CrossRefGoogle Scholar
  24. 24.
    J. Kirschner, Phys. Rev. B 30, 415 (1984).CrossRefGoogle Scholar
  25. 25.
    H.J. Elmers and J. Hauschild, Surf. Sci. 320, 134 (1994).CrossRefGoogle Scholar
  26. 26.
    T.L. Jones and D. Venus, Surf. Sci. 302, 126 (1994).CrossRefGoogle Scholar
  27. 27.
    H.J. Elmers, Internat. J. Modern Phys. B 9, 3115 (1995).CrossRefGoogle Scholar
  28. 28.
    H.J. Elmers, J. Hauschild, and U. Gradmann, J. Magn. Magn. Mater. 140–144, 671 (1995).CrossRefGoogle Scholar
  29. 29.
    H.J. Elmers, J. Hauschild, and U. Gradmann, Phys. Rev. B 54, 15224 (1996).CrossRefGoogle Scholar
  30. 30.
    H.J. Elmers, J. Hauschild, G.H. Liu, and U. Gradmann, J. Appl. Phys. 79, 4984 (1996).CrossRefGoogle Scholar
  31. 31.
    K.L. Man, M.S. Altman, and H. Poppa, Surf. Sci. 480, 163 (2001).CrossRefGoogle Scholar
  32. 32.
    Th. Duden, R. Zdyb, M.S. Altman, and E. Bauer, Surf. Sci. 480, 145 (2001).CrossRefGoogle Scholar
  33. 33.
    E. Bauer, T. Duden, H. Pinkvos, H. Poppa, and K. Wurm, J. Magn. Magn. Mater. 156, 1 (1996).CrossRefGoogle Scholar
  34. 34.
    T. Scheunemann, R. Feder, J. Henk, E. Bauer, T. Duden, H. Pinkvos, H. Poppa, H. and K. Wurm, Solid State Commun. 104, 787 (1997).CrossRefGoogle Scholar
  35. 35.
    M.P. Gokhale, A. Ormeci, and D.L. Mills, Phys. Rev. B 46, 8978 (1992).CrossRefGoogle Scholar
  36. 36.
    M. Plihal and D.L. Mills, Phys. Rev. B 58, 14407 (1998) and references therein.CrossRefGoogle Scholar
  37. 37.
    J. Hong and D.L. Mills, Phys. Rev. B 62, 5589 (2000).CrossRefGoogle Scholar
  38. 38.
    D.L. Abraham and H. Hopster, Phys. Rev. Lett. 62, 1157 (1989).CrossRefGoogle Scholar
  39. 39.
    H.C. Siegmann, Surf. Sci. 307–309, 1076 (1994).CrossRefGoogle Scholar
  40. 40.
    J.C. Groebli, D. Oberli, and F. Meier, Phys. Rev. B 52, R 13095 (1995).Google Scholar
  41. 41.
    J. Hong and D.L. Mills, Phys. Rev. B 59, 13840 (1999).CrossRefGoogle Scholar
  42. 42.
    P.J. Feibelman and D.E. Eastman, Phys. Rev. B 10, 4932 (1974).CrossRefGoogle Scholar
  43. 43.
    E. Bauer, unpublished.Google Scholar
  44. 44.
    M.P. Gokhale and D.L. Mills, Phys. Rev. Lett. 66, 2251 (1991).CrossRefGoogle Scholar
  45. 45.
    D. Oberli, R. Burgermeister, S. Riesen, W. Weber, and H.C. Siegmann, Phys. Rev. Lett. 81, 4228 (1998).CrossRefGoogle Scholar
  46. 46.
    D.L. Abraham and H. Hopster, Phys. Rev. Lett. 59, 2333 (1987).CrossRefGoogle Scholar
  47. 47.
    C. Li, A.J. Freeman, and C.L. Fu, J. Magn. Magn. Mater. 94, 134 (1991).CrossRefGoogle Scholar
  48. 48.
    E. Bauer, Surf. Rev. Lett. 5, 1275 (1998).CrossRefGoogle Scholar
  49. 49.
    E. Bauer, Rep. Prog. Phys. 57, 895 (1994).CrossRefGoogle Scholar
  50. 50.
    T. Nakanishi, S. Okumi, K. Togawa, C. Takahashi, C. Suzuki, F. Furuta, T. Ida, K. Wada, T. Omori, Y. Kurihara, M. Tawada, M. Yoshioka, H. Horinaka, K. Wada, T. Matsuyama, T. Baba, and M. Mizuta, In CP421, Polarized Gas Targets and Polarized Beams, edit. by R.J. Holt and M.A. Miller (American Institute of Physics, 1998), p. 300.Google Scholar
  51. 51.
    D.T. Pierce, In: Experimental Methods in the Physical Sciences, Vol. 29A, edit. by F.B. Dunning and R.G. Hulet (Academic Press), p. 1.Google Scholar
  52. 52.
    T. Duden and E. Bauer, Rev. Sci. Instrum. 66, 2861 (1995).CrossRefGoogle Scholar
  53. 53.
    E. Bauer, In: Handbook of Microscopy, Methods II, edit. by S. Amelinckx, D. van Dyck, J. van Landuyt, and G. van Tendeloo (VCH, Weinheim, 1997) p. 751.Google Scholar
  54. 54.
    K. Grzelakowski, T. Duden, E. Bauer, H. Poppa, and S. Chiang, IEEE Trans. Magnetics 30, 4500 (1994).CrossRefGoogle Scholar
  55. 55.
    K. Grzelakowski and E. Bauer, Rev. Sci. Instrum. 67, 742 (1996).CrossRefGoogle Scholar
  56. 56.
    H. Pinkvos, H. Poppa, E. Bauer, and J. Hurst, Ultramicroscopy 47, 339 (1992).CrossRefGoogle Scholar
  57. 57.
    T. Duden and E. Bauer, Phys. Rev. Lett. 77, 2308 (1996).CrossRefGoogle Scholar
  58. 58.
    H. Pinkvos, H. Poppa, E. Bauer, and G.-M. Kim, In: Magnetism and Structure in Systems of Reduced Dimension, edit. by R. F. C. Farrow, B. Dieny, M. Donath, A. Fert, and B.D. Hermsmeier (Plenum Press, New York, 1993), p. 25.Google Scholar
  59. 59.
    K.L. Man, R. Zdyb, Y.J. Feng, C.T. Chan, M.S. Altman, and E. Bauer, to be published.Google Scholar
  60. 60.
    H. Fritsche, J. Kohlhepp, and U. Gradmann, Phys. Rev. B 51, 15933 (1995).CrossRefGoogle Scholar
  61. 61.
    H. Knoppe and E. Bauer, Phys. Rev. B 48, 1794 (1993).CrossRefGoogle Scholar
  62. 62.
    R. Allenspach, M. Stampanoni, and A. Bischof, Phys. Rev. Lett. 65, 3344 (1990).CrossRefGoogle Scholar
  63. 63.
    M. Speckmann, H.P. Oepen, and H. Ibach, Phys. Rev. Lett. 75, 2035 (1995).CrossRefGoogle Scholar
  64. 64.
    H.P. Oepen, Y.T. Millev, and J. Kirschner, J. Appl. Phys. 81, 5044 (1997).CrossRefGoogle Scholar
  65. 65.
    H.P. Oepen, M. Speckmann, Y. Millev, and J. Kirschner, Phys. Rev. B 55, 2752 (1997).CrossRefGoogle Scholar
  66. 66.
    T. Duden and E. Bauer, MRS Symp. Proc. 475, 283 (1997).Google Scholar
  67. 67.
    M.S. Altman, H. Pinkvos, and E. Bauer, J. Magn. Soc. Jpn 19, 129 (1995).Google Scholar
  68. 68.
    T. Duden, Ph.D. thesis, TU Clausthal (1996).Google Scholar
  69. 69.
    B. Kaplan and A. Gehring, J. Magn. Magn. Mater. 128, 111 (1993).CrossRefGoogle Scholar
  70. 70.
    Y. Yafet and E.M. Gyorgy, Phys. Rev. B 38, 9145 (1988).CrossRefGoogle Scholar
  71. 71.
    E.Y. Vedmedenko, H.P. Oepen, A. Ghazali, J.-C.S. Lévy, and J. Kirschner, Phys. Rev. Lett. 84, 5884 (2000).CrossRefGoogle Scholar
  72. 72.
    R. Allenspach and A. Bischof, Phys. Rev. Lett. 69, 3385 (1992).CrossRefGoogle Scholar
  73. 73.
    T. Duden and E. Bauer, Phys. Rev. B 59, 468 (1999).CrossRefGoogle Scholar
  74. 74.
    J.C. Slonczewski, Phys. Rev. Lett. 67, 3172 (1991).CrossRefGoogle Scholar
  75. 75.
    J.C. Slonczewski, J. Appl. Phys. 73, 5957 (1993).CrossRefGoogle Scholar
  76. 76.
    S. Demokritov, E. Tsymbal, P. Gruenberg, W. Zinn, and I.K. Schuller, Phys. Rev. B 49, 720 (1994).CrossRefGoogle Scholar
  77. 77.
    R. Arias and D.L. Mills, Phys. Rev. B 59, 11871 (1999).CrossRefGoogle Scholar
  78. 78.
    T. Duden and E. Bauer, Phys. Rev. B 59, 474 (1999).CrossRefGoogle Scholar
  79. 79.
    T. Duden and E. Bauer, J. Magn. Magn. Mater. 191, 301 (1999).CrossRefGoogle Scholar
  80. 80.
    E.D. Tober, G. Witte, and H. Poppa, J. Vac. Sci. Technol. A 18, 1845 (2000).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • E. Bauer

There are no affiliations available

Personalised recommendations