Lorentz Microscopy

  • A.K. Petford-Long
  • J.N. Chapman
Part of the NanoScience and Technology book series (NANO)


Lorentz microscopy has been used extensively for the past 40 years to study magnetic domain structure and magnetization reversal mechanisms in magnetic thin films and elements. In this chapter, the principal imaging and diffraction modes are reviewed, both qualitative and quantitative. In addition, a description of the instrumental and specimen requirements is included, and in the final section, the application of the various techniques to the study of spin-valve and spin-tunnel junction layered structures is discussed as a means of illustrating the type of information that can be obtained.


Domain Wall Magnetization Reversal Easy Axis Sense Layer Magnetic Domain Structure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.E. Hale, H.W. Fuller and H. Rubenstein, J. Appl. Phys. 30, 789 (1959).CrossRefGoogle Scholar
  2. 2.
    H. Boersch and H. Raith, Naturwissenschaften 46, 574 (1959).CrossRefGoogle Scholar
  3. 3.
    J.N. Chapman, J.Phys. D: Appl. Phys. 17, 623 (1984).CrossRefGoogle Scholar
  4. 4.
    H. Rose, Ultramicroscopy 2, 251 (1977).CrossRefGoogle Scholar
  5. 5.
    J.P. Jakubovics, in Handbook of Microscopy: Applications in Materials Science, Solid State Physics and Chemistry, eds. S. Amelinckx et al., (VCH: Weinheim, New York, 1997) p. 505.Google Scholar
  6. 6.
    A. Hubert and R. Schäfer, Magnetic Domains (Springer-Verlag, Berlin, 1998).Google Scholar
  7. 7.
    J.N. Chapman and M.R. Scheinfein, J. Magn. Magn. Mater. 200, 729 (1999).CrossRefGoogle Scholar
  8. 8.
    L. Reimer, Transmission electron microscopy: the physics of image formation and microanalysis, Springer Series in Optical Sciences 36 (Springer-Verlag, Berlin, 1994).Google Scholar
  9. 9.
    I.R. McFadyen and J.N. Chapman, EMSA Bulletin 22, 64 (1992).Google Scholar
  10. 10.
    R.C. Doole, A.K. Petford-Long and J.P. Jakubovics, Rev. Sci. Instrum. 64(4), 1038 (1993).CrossRefGoogle Scholar
  11. 11.
    K. Tsuno and T. Taoka, Jap. J. Appl. Phys. 22, 1041 (1983).CrossRefGoogle Scholar
  12. 12.
    K. Tsuno and M. Inoue, Optik 67, 363 (1984).Google Scholar
  13. 13.
    J.N. Chapman, R.P. Ferrier, L.J. Heyderman, S. McVitie, W.A.P. Nicholson, and B. Bormans, in Electron 15. Microscopy and Analysis (ed. A.J. Craven, IOPP, Bristol, 1993), 1.Google Scholar
  14. 14.
    J.N. Chapman, A.B. Johnston, L.J. Heyderman, S. McVitie, W.A.P. Nicholson and B. Bormans, IEEE Trans. Mag. 30, 4479 (1994).CrossRefGoogle Scholar
  15. 15.
    D.B. Williams and C.B. Carter, Transmission Electron Microscopy (Plenum Press, New York, 1996).Google Scholar
  16. 16.
    Y. Aharanov and D. Bohm, Phys.Rev.115, 485 (1959).CrossRefGoogle Scholar
  17. 17.
    J.N. Chapman, G.R. Morrison, J.P. Jakubovics, and R.A. Taylor, IOP Conf. Ser. 68, 197 (1984).Google Scholar
  18. 18.
    A.B. Johnston and J.N. Chapman, J. Microsc. 179, 119 (1995).Google Scholar
  19. 19.
    N.H. Dekkers and H. de Lang, Optik 41, 452 (1974).Google Scholar
  20. 20.
    G.R. Morrison, H. Gong, J.N. Chapman, and V. Hrnciar, J. Appl. Phys. 64, 1338 (1988).CrossRefGoogle Scholar
  21. 21.
    G.R. Morrison and J.N. Chapman, Optik 64, 1 (1983).Google Scholar
  22. 22.
    J.N. Chapman, I.R. McFadyen and S. McVitie, IEEE Trans. Magn. 26, 1506 (1990).CrossRefGoogle Scholar
  23. 23.
    A.C. Daykin and A.K. Petford-Long, Ultramicrosc. 58, 365 (1995).CrossRefGoogle Scholar
  24. 24.
    S.J. Hefferman, J.N. Chapman and S. McVitie, J. Magn. Magn. Mat. 83, 223 (1990).CrossRefGoogle Scholar
  25. 25.
    J.N. Chapman, L.J. Heyderman, S. McVitie and W.A.P. Nicholson, in Advanced Materials '95, Proc. 2nd NIRIM International Symposium on Advanced Materials (eds. Y. Bando, M. Kamo, H. Haneda, T. Aizaw — NIRIM, Japan), 23 (1995).Google Scholar
  26. 26.
    S. McVitie, J.N. Chapman, L. Zhou, L.J. Heyderman, and W.A.P. Nicholson, J. Magn. Magn. Mat. 148, 232 (1995).CrossRefGoogle Scholar
  27. 27.
    K.J. Kirk, M.R. Scheinfein, J.N. Chapman, S. McVitie, M.F. Gillies, B.R. Ward, and J.G. Tennant, J. Phys. D: Appl. Phys. 34, 160 (2001).CrossRefGoogle Scholar
  28. 28.
    X. Portier, A.K. Petford-Long, T.C. Anthony and J.A. Brug, IEEE Trans. Mag. 33(5), 3574 (1997).CrossRefGoogle Scholar
  29. 29.
    X. Portier and A.K. Petford-Long, J. Phys. D.: Appl. Phys. 32, R89 (1999).CrossRefGoogle Scholar
  30. 30.
    B. Dieny, V.S. Speriosu, S. Metin, S.S.P. Parkin, B.A. Gurney, P. Baumgart and D.R. Wilhoit, J. Appl. Phys. Rev. 69(8), 4774 (1991).CrossRefGoogle Scholar
  31. 31.
    J.N. Chapman, P.R. Aitchison, K.J. Kirk, S. McVitie, J.C.S. Kools, and M.F. Gillies, J. Appl. Phys. 83, 5321 (1998).CrossRefGoogle Scholar
  32. 32.
    X. Portier, A.K. Petford-Long, T.C. Anthony and J.A. Brug, J. Appl. Phys. 85(8), 4120–4126 (1999).CrossRefGoogle Scholar
  33. 33.
    W.J. Gallagher, S.S.P. Parkin, Y. Lu, X.P. Bian, A. Marley, K.P. Roche, R.P. Altman, S.A. Rishton, C. Jahnes, T.M. Shaw and G. Xiao, J. Appl. Phys. 81, 3741 (1997).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • A.K. Petford-Long
  • J.N. Chapman

There are no affiliations available

Personalised recommendations