Scanning Probe Methods for Magnetic Imaging

  • U. Hartmann
Part of the NanoScience and Technology book series (NANO)


Previous chapters give an introduction to novel magnetic imaging methods based on the scanning tunneling microscope (STM) or on the scanning force microscope (SFM). While the STM is sensitive to the surface density of electronic states and to its spin dependence, the magnetic force microscope (MFM), as a special variant of the SFM, detects the magnetic stray field produced by a sample, or the response of the sample to the local stray field produced by the probe. The basic setup in tunneling or force microscopy establishes a unified experimental approach as the basis of all scanning probe methods (SPM). The present chapter summarizes the basic aspects underlying this approach, analyzes achievements as well as limitations, and introduces three additional SPM.

Microscopic imaging requires suitable interactions between a probe and a sample that allow one to map a physical quantity — in the present context, a magnetic property — at a certain lateral resolution. In the case of tomographic methods, a certain depth resolution is also required. Most frequently employed probe-sample interactions in magnetic imaging involve electron exchange and the analysis of the spin polarization, the reflection and transmission of light in terms of the Kerr and Faraday effects, and magneto-static field effects, as, e.g., being used in the Bitter colloid method. All these interactions, used as the basis of classical methods of magnetic imaging, can also be implemented in scanning probe strategies. The electron spin is detected by the spin-polarized STM(SPSTM). Kerr and Faraday effects are utilized in the magneto-optic scanning near-field optical microscope (MOSNOM). Near-surface stray fields produced by ferromagnetic or superconducting samples can be analyzed using scan ning SQUID (superconducting quantum interference device) microscopes (SSM) or microscopes based on other field sensors like Hall probes or magneto-resistive probes. Together with a discussion of some general aspects concerning probe-sample magnetic interactions, the MOSNOM and the SSM will be introduced in the following.

The high-resolution detection of spin resonances for imaging purposes has been the subject of considerable effort for quite some time. Also in this area classical approaches can be adapted to scanning probe strategies in order to analyze nuclear magnetic resonance (NMR), electron spin resonance (ESR), or ferromagnetic resonance (FMR) at a sub-micron scale. Some general information on the respective approaches of magnetic resonance force microscopy (MRFM) is provided as well by the following discussion.


Electron Spin Resonance Magnetic Force Microscope Magnetic Imaging Scanning Force Microscope Mechanical Resonant Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    U. Hartmann (ed.): Magnetic Multilayers and Giant Magnetoresistance, Springer Ser. in Surf. Sci. Vol. 37 (Springer, Berlin Heidelberg 1999)Google Scholar
  2. 2.
    S. Amelincks, D. van Dyck, J. van Landuyt, and G. van Tendeloo (eds.): Handbook of Microscopy (VCH, Weinheim 1997)Google Scholar
  3. 3.
    A. Hubert and R. Schäfer: Magnetic Domains — The Analysis of Magnetic Micrsostructures (Springer, Berlin Heidelberg 1998)Google Scholar
  4. 4.
    G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel: Phys. Rev. Lett. 49, 57 (1982)CrossRefGoogle Scholar
  5. 5.
    R. Wiesendanger and H.-J. Güntherodt (eds.): Scanning Tunneling Microscopy I–III, Springer Ser. in Surf. Sci. Vols. 20, 28, 29 (Springer, Berlin Heidelberg 1992–95)Google Scholar
  6. 6.
    J. Chen: Introduction to Scanning Tunneling Microscopy (Oxford Univ. Press, New York 1993)Google Scholar
  7. 7.
    R. Wiesendanger (ed.): Scanning Probe Microscopy, Springer Ser. in NanoSci. Techn. (Springer, Berlin Heidelberg 1998)Google Scholar
  8. 8.
    R. Wiesendanger: Scanning Probe Microscopy and Spectroscopy (Cambridge Univ. Press, Cambridge 1994)Google Scholar
  9. 9.
    T. Sakurai and Y. Watanabe (eds.): Advances in Scanning Probe Microscopy, Spinger Ser. in Adv. Mat. Res. (Springer, Berlin Heidelberg 2000)Google Scholar
  10. 10.
    G. Binnig, C.F. Quate, and Ch. Gerber: Phys. Rev. Lett. 56, 930 (1986)CrossRefGoogle Scholar
  11. 11.
    D. Pohl, W. Denk, and M. Lanz: Appl. Phys. Lett. 44, 651 (1984)CrossRefGoogle Scholar
  12. 12.
    S.D. Kevan (ed.): Angle-Resolved Photoemission (Elsevier, Amsterdam 1992)Google Scholar
  13. 13.
    L. Baumgarten, C.M. Schneider, H. Petersen, F. Schäfer, and J. Kirschner: Phys. Rev. Lett. 23, 492 (1980)Google Scholar
  14. 14.
    E. Fuchs, Naturwiss. 47, 392 (1960)CrossRefGoogle Scholar
  15. 15.
    J.N. Chapman: J. Phys. D 17, 623 (1984)CrossRefGoogle Scholar
  16. 16.
    A. Tonomura, T. Matsuda, R. Suzuki, A. Fukuhara, N. Osakabe, H. Umezaki, J. Endo, K. Shinigawa, Y. Sugita, and H. Fujiwara: Phys. Rev. Lett. 48, 1443 (1982)CrossRefGoogle Scholar
  17. 17.
    M.S. Altmann, H. Pinkvos, J. Hurst, H. Poppa, G. Marx, and E. Bauer: Mat. Res. Soc. Symp. Proc. 232, 125 (1991)Google Scholar
  18. 18.
    K. Koike and K. Hayakawa: Jpn. J. Appl. Phys. 23, L 187 (1984)Google Scholar
  19. 19.
    S.W. Lovesey: Theory of Neutron Scattering from Condensed Matter (Clarendon Press, Oxford 1984)Google Scholar
  20. 20.
    R. Wiesendanger, H.-J. Güntherodt, G. Güntherodt, R.J. Gambio, and R. Ruf: Phys. Rev. Lett. 57, 2442 (1986)CrossRefGoogle Scholar
  21. 21.
    Y. Martin and H.K. Wickramasinghe: Appl. Phys. Lett. 50, 1455 (1987)CrossRefGoogle Scholar
  22. 22.
    A. Carey and E.D. Isaac: Magnetic Domains and Techniques for Their Observation (Academic Press, New York 1966)Google Scholar
  23. 23.
    E. Betzig, J.K. Trautmann, R. Wolfe, E.M. Gyorgy, and L. Finn: Appl. Phys. Lett. 61, 142 (1992)CrossRefGoogle Scholar
  24. 24.
    A. Oral, S.J. Bending, R.G. Humphreys, and M. Heinini: J. Low Temp. Phys. 105, 1135 (1996)CrossRefGoogle Scholar
  25. 25.
    B.D. Josephson: Phys. Lett. 1, 251 (1962)CrossRefGoogle Scholar
  26. 26.
    W.G. Jenks, I.M. Thomas, and J.P. Wikswo Jr. in: Encyclopedia of Applied Physics, G.L. Trigg, E.S. Vera, and W. Greulich (eds.) Vol. 19, p. 457 (VCH, New York 1997)Google Scholar
  27. 27.
    H. Koch, R. Cantor, D. Drung, S.N. Erne, K.P. Matthies, M. Peters, T. Reyhauen, H.J. Scheer, and H.D. Hahlbohm: IEEE Trans Mag. 27, 2793 (1991)CrossRefGoogle Scholar
  28. 28.
    R.H. Koch, C.P. Umbach, G.J. Clarke, P. Chandhari, and R.B. Laibowith: Appl. Phys. Lett. 51, 200 (1978); H. Nakane, Y. Tarntani, T. Nishino, H. Yamada, and U. Kawabe: Jpn. J. Appl. Phys. 26, L 1925 (1987)CrossRefGoogle Scholar
  29. 29.
    J.G. Bednorz and K.A. Müller: Z. Phys. B 64, 189 (1986)CrossRefGoogle Scholar
  30. 30.
    J.R. Kirtley and J.P. Wikswo Jr.: Annu. Rev. Mater. Sci. 29, 117 (1999)CrossRefGoogle Scholar
  31. 31.
    H. Weinstock (ed.): SQUID Sensors — Fundamentals, Fabrication and Applications (Uluwer, Dodrecht 1996)Google Scholar
  32. 32.
    F.P. Rogers, Master's Thesis (MIT, Cambridge 1983)Google Scholar
  33. 33.
    H. Minami, Q. Geng, K. Chiara, J. Yuyama, and E. Goto: Cryogenics 32, 648 (1992)CrossRefGoogle Scholar
  34. 34.
    A. Mathai, D. Song, Y. Gun, and F.C. Wellstood: Appl. Phys. Lett. 61, 598 (1992)CrossRefGoogle Scholar
  35. 35.
    A. Mathai, D. Song, Y. Gun, and F.C. Wellstood: IEEE Trans. Appl. Supercond. 3, 2609 (1993)CrossRefGoogle Scholar
  36. 36.
    L.N. Vu, M.S. Wistrom, and D. van Harlingen: Appl. Phys. Lett. 63, 1693 (1993)CrossRefGoogle Scholar
  37. 37.
    J.R. Kirtley, M.B. Ketchen, C.C. Tsuei, K.G. Stawiasz, J.Z. Sun, W.J. Gallagher, U.S. Yu Jalmes, A. Gupta, and S.J. Wind: IBM J. Res. Develop. 39, 655 (1995)CrossRefGoogle Scholar
  38. 38.
    R.C. Black, F.C. Wellstood, E. Dantsler, A.H. Micklich, J.H. Kingston, D.T. Nemeth, and J. Clarke: Appl. Phys. Lett. 64, 100 (1994)CrossRefGoogle Scholar
  39. 39.
    T.S. Lee, Y.R. Chemla, E. Dantsker, and J. Clarke: IEEE Trans. Appl. Supercond. 7, 3147 (1997)CrossRefGoogle Scholar
  40. 40.
    P. Pitzius, V. Dworak, and U. Hartmann in: Proc. ISEC'97 Conf., H. Koch, S. Knappe (eds.) Vol. 3, p. 359 (PTB, Braunschweig, 1997)Google Scholar
  41. 41.
    U. Hartmann: Annu. Rev. Mat. Sci. 29, 53 (1999)CrossRefGoogle Scholar
  42. 42.
    G. Alzetta, E. Arminando, C. Ascoli, and A. Zozzini: Il Nuovo Cimento B 52, 392 (1967)Google Scholar
  43. 43.
    J.A. Sidles: Appl. Phys. Lett. 58, 2854 (1991)CrossRefGoogle Scholar
  44. 44.
    D. Rugar, S.C. Yannoni, and J.A. Sidles: Nature 360, 563 (1992)CrossRefGoogle Scholar
  45. 45.
    J.A. Sidles, J.L. Garbini, K.J. Burland, D. Rugar, O. Züger, S. Hoen, and S.C. Yannoni: Reviews of Modern Physics 67, 249 (1995)CrossRefGoogle Scholar
  46. 46.
    C.S. Yannoni, O. Züger, D. Rugar, and J.S. Sidles in Encyclopedia of Magnetic Resonance, D.M. Grant and R.K. Harris (eds.), p. 2093 (Wiley, Chichester 1996)Google Scholar
  47. 47.
    J.A. Sidles, J.L. Garbini, and G.L. Drobny: Rev. Sci. Instrum. 63, 3881 (1992)CrossRefGoogle Scholar
  48. 48.
    C. Ascoli, P. Bachieri, C. Frediani. L. Leuci, M. Martinelli, G. Alzetta, R.M. Celli, and L. Pardi: Appl. Phys. Lett. 69, 3920 (1996)CrossRefGoogle Scholar
  49. 49.
    J.A. Sidles and R. Rugar: Phys. Rev. Lett. 70, 3506 (1993)CrossRefGoogle Scholar
  50. 50.
    K. Wago, D. Botkin, S.C. Yannoni, and D. Rugar: Appl. Phys. Lett. 72, 2757 (1998)CrossRefGoogle Scholar
  51. 51.
    K. Wago, O. Züger, J. Wegener, R. Kendrick, S.C. Yannoni, and D. Rugar: Rev. Sci. Instrum. 68, 1823 (1997)CrossRefGoogle Scholar
  52. 52.
    Z. Zhang, P.C. Hammel, and P.E. Wigen: Appl. Phys. Lett. 68, 2005 (1996)CrossRefGoogle Scholar
  53. 53.
    J. Suk, P.C. Hammel, M. Midzor, M.L. Roukes, and J.R. Childress: J. Vac. Sci. Technol. B 16, 2275 (1998)CrossRefGoogle Scholar
  54. 54.
    Z. Zhang, P.C. Hammel, M. Midzor, M.L. Roukes, and J.R. Childress: Appl. Phys. Lett. 73,1959 (1998)Google Scholar
  55. 55.
    D. Rugar, O. Züger, S. Hoen, C.S. Yannoni, H.M. Vieth, and R.D. Kendrick: Science 264, 1560 (1994)Google Scholar
  56. 56.
    K. Wago, O. Züger, R. Kendrick, C.S. Yannoni, and D. Rugar: J. Vac. Sci. Technol. B 14, 1197 (1996)CrossRefGoogle Scholar
  57. 57.
    A. Schaff and W.S. Veeman: J. Magn. Reson. 126, 200 (1997)CrossRefGoogle Scholar
  58. 58.
    T.A. Barrett, C.R. Miers, H.A. Sommer, K. Mochizuki, and J.T. Markert: Appl. Phys. Lett. 83, 6235 (1998)Google Scholar
  59. 59.
    G. Leskowitz, L.A. Masden, and D.P. Weitekamp: Solid State Nuclear Magnetic Resonance 11, 73 (1998)CrossRefGoogle Scholar
  60. 60.
    O. Züger and D. Rugar: Appl. Phys. Lett. 63, 2496 (1993)CrossRefGoogle Scholar
  61. 61.
    A. Schaff and W.S. Veeman: Appl. Phys. Lett. 70, 2598 (1997)CrossRefGoogle Scholar
  62. 62.
    O. Züger, S.T. Hoen, C.S. Yannoni, and D. Rugar: J. Appl. Phys. 79, 1881 (1996)CrossRefGoogle Scholar
  63. 63.
    O. Züger and D. Rugar: J. Appl. Phys. 63, 611 (1994)Google Scholar
  64. 64.
    T.G. Ruskell, M. Löhndorf, and J. Moreland: J. Appl. Phys. 86, 664 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • U. Hartmann

There are no affiliations available

Personalised recommendations