Magnetic Force Microscopy — Towards Higher Resolution

  • L. Abelmann
  • A. van den Bos
  • C. Lodder
Part of the NanoScience and Technology book series (NANO)


In this chapter, magnetic force microscopy is treated in detail with an emphasis on high resolution and hard magnetic materials such as recording media. The chapter starts with basic MFM operation, instrumentation, and a frequency domain theory of image formation using transfer functions. Subsequently, the limits of resolution in MFM are discussed, and the concept of criticalwavelength as ameasure for resolution is introduced. To achieve high resolution, the tip-sample distance has to be small, and methods of tip-sample distance control are discussed. Finally, generations of MFM tips are treated, including a full silicon micromachined design, which eventually might take the resolution of MFM below 10 nm.1


Magnetic Charge Magnetic Recording Magnetic Force Microscopy Critical Wavelength Magnetic Coating 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Abelmann, S. Porthun, M. Haast, C. Lodder, A. Moser, M.E. Best, P.J.A. Vanschendel, B. Stiefel, H.J. Hug, G.P. Heydon, A. Farley, S.R. Hoon, T. Pfaffelhuber, R. Proksch, and K. Babcock, J. Magn. Magn. Mater. 190, 135 (1998)CrossRefGoogle Scholar
  2. 2.
    T.R. Albrecht, P. Grütter, D. Horne, and D. Rugar, J. Appl. Phys. 69, 668 (1991)CrossRefGoogle Scholar
  3. 3.
    D.K. Anand, “Introduction to Control Systems”, Pergamon Press, Oxford, 2nd edition, 1984.Google Scholar
  4. 4.
    A.G. van den Bos, I.R. Heskamp, M.H. Siekman, L. Abelmann, and J.C. Lodder, IEEE Trans. Magn. 38, 2441 (2002)CrossRefGoogle Scholar
  5. 5.
    P.B. Fischer, M.S. Wei, and S.Y. Chou, J. Vac. Sci. & Technol. B 11, 2570 (1993)CrossRefGoogle Scholar
  6. 6.
    L. Folks, M.E. Best, P.M. Rice, B.D. Terris, D. Weller, and J.N. Chapman, Appl. Phys. Lett. 76, 909 (2000)CrossRefGoogle Scholar
  7. 7.
    A. Garcia-Valenzuela and M. Tabib-Azar, in Proceedings SPIE, Integrated Optics and Microstructures II, Vol. 2291, eds. M. Tabib-Azar, D.L. Polla, and K.-K. Wong, SPIE, 1994.Google Scholar
  8. 8.
    P. Grütter, H.J. Mamin, and D. Rugar, in “Scanning Tunneling Microscopy”, Vol. II, eds. H.J. Günterodt and R. Wiesendanger, Springer, Berlin, Heidelberg, New York, 1992.Google Scholar
  9. 9.
    P. Grütter, D. Rugar, and H.J. Mamin, Appl. Phys. Lett. 57, 1820 (1990)CrossRefGoogle Scholar
  10. 10.
    P. Grütter, D. Rugar, H.J. Mamin, G. Castello, C.-J. Lin, I.R. McFadyen, R.M. Valletta, O. Wolter, T. Bauer, and J. Greschner, J. Appl. Phys. 69, 5883 (1991)CrossRefGoogle Scholar
  11. 11.
    P.F. Hopkins, J. Moreland, S.S. Malhotra, and S.H. Liou, J. Appl. Phys. 79, 6448 (1996)CrossRefGoogle Scholar
  12. 12.
    A. Hubert and R. Schäfer: “Magnetic Domains: The Analysis of Magnetic Microstructures”, Springer-Verlag, Berlin, Heidelberg, New-York, 1998.Google Scholar
  13. 13.
    H.J. Hug, B. Stiefel, P.J.A. Vanschendel, A. Moser, S. Martin, and H.J. Güntherodt, Rev. Sci. Instrum. 70, 3625 (1999)CrossRefGoogle Scholar
  14. 14.
    Y. Martin and H.K. Wickramasinghe, Appl. Phys. Lett. 50, 1455 (1987)CrossRefGoogle Scholar
  15. 15.
    L. Meirovitch, “Fundamentals of Vibrations”, Mc Graw-Hill, Boston, 2001Google Scholar
  16. 16.
    U. Memmert, A.N. Muller, and U. Hartmann, Measurement Science & Technology 11, 1342 (2000)CrossRefGoogle Scholar
  17. 17.
    G.N. Phillips, M.H. Siekman, L. Abelmann, J.C. Lodder, Appl. Phys. Lett. 81, 865 (2002)CrossRefGoogle Scholar
  18. 18.
    S. Porthun, M. Rührig, J.C. Lodder, in “Forces in Scanning Probe Microscopy”, NATO ASI Series: Applied Sciences, 1995Google Scholar
  19. 19.
    S. Porthun, “High Resolution Magnetic Force Microscopy: Instrumentation and Application for Recording Media”, Ph.D. thesis, University of Twente, Enschede, The Netherlands, 1996Google Scholar
  20. 20.
    S. Porthun, L. Abelmann, and C. Lodder, J. Magn. Magn. Mater. 182, 238 (1998)CrossRefGoogle Scholar
  21. 21.
    S. Porthun, L. Abelmann, S.J.L. Vellekoop, J.C. Lodder, and H.J. Hug, Appl. Phys. A 66, 1185 (1998)CrossRefGoogle Scholar
  22. 22.
    K.R. Ramstöck, Magfem3d,, 1999Google Scholar
  23. 23.
    P. Rice, S.E. Russek, J. Hoinville, and M.H. Kelley, IEEE Trans. Magn. 33, 4065 (1997)CrossRefGoogle Scholar
  24. 24.
    D. Rugar, H.J. Mamin, P. Guethner, S.E. Lambert, J.E. Stern, I. McFadyen, and T. Yogi, J. Appl. Phys. 68, 1169 (1990)CrossRefGoogle Scholar
  25. 25.
    D. Rugar, H.J. Mamin, R. Erlandsson, J.E. Stern, and B.D. Terris, Rev. Sci. Instrum. 59, 2337 (1988)CrossRefGoogle Scholar
  26. 26.
    M. Rührig, S. Porthun, and J.C. Lodder, Rev. Sci. Instrum. 65, 3224 (1994)CrossRefGoogle Scholar
  27. 27.
    M. Rührig, S. Porthun, J.C. Lodder, S. McVitie, L.J. Heyderman, A.B. Johnston, and J.N. Chapman, J. Appl. Phys. 79, 2913 (1996)CrossRefGoogle Scholar
  28. 28.
    C. Schönenberger, S.F. Alvarado, S.E. Lambert, and I.L. Saunders, J. Appl. Phys. 67, 7278 (1990)CrossRefGoogle Scholar
  29. 29.
    G.D. Skidmore and E.D. Dahlberg, Appl. Phys. Lett. 71, 3293 (1997)CrossRefGoogle Scholar
  30. 30.
    A.J. Stevenson, M.B. Gray, H.-A. Bachor, and D.E. McClelland, Appl. Opt. 32, 3481 (1993)CrossRefGoogle Scholar
  31. 31.
    K. Sueoka, K. Okuda, N. Matsubara, and F. Sai, J. Vac. Sci. & Technol. B 9, 1313 (1991)CrossRefGoogle Scholar
  32. 32.
    O. Teschke, Appl. Phys. Lett. 79, 2773 (2001)CrossRefGoogle Scholar
  33. 33.
    B. Vellekoop, E. Abelmann, S. Porthun, and C. Lodder, J. Magn. Magn. Mater. 190, 148 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • L. Abelmann
  • A. van den Bos
  • C. Lodder

There are no affiliations available

Personalised recommendations