Imaging Magnetic Microspectroscopy

Part of the NanoScience and Technology book series (NANO)


There are several well established techniques for spectroscopy of magnetic films and surfaces that are commonly employed when information about electronic states, binding properties, or element-resolved magnetic properties is required. The reduction in lateral size that goes along with the soaring extent to which magnetic elements and devices are used or planned to be used in technological applications in magnetic sensors, data storage, or magneto-electronics demands magnetic spectroscopic information on a microscopic lateral length scale. Thus, the combination of magnetic spectroscopy and microscopy into what is commonly termed microspectroscopy or spectromicroscopy would be ideal for the study of small magnetic structures.

This chapter explains the combination of photoelectron emission microscopy (PEEM) and X-ray magnetic circular dichroism (XMCD) in absorption for imaging XMCD-PEEM microspectroscopy. In a PEEM, an electrostatic electron optics creates a magnified image of the secondary electron intensity distribution at the sample surface. When excited by soft X-rays, the image intensity can thus be regarded as a local electron yield probe of X-ray absorption. In XMCD, the measurement of the total electron yield of the sample is frequently used to determine the X-ray absorption as a function of photon energy and helicity of the circularly polarized radiation. Consequently, scanning the photon energy and recording PEEM images at each photon energy step for both helicities results in a microspectroscopic data set that allows one to extract the full information that is usually obtained from XMCD spectra for each single pixel of the images. Of particular interest is therefore the application of the so-called sum rules to extract the effective spin moment and the orbital moment, projected onto the direction of incoming light. This chapter starts with a short overview of magnetic microspectroscopy techniques in comparison to XMCD-PEEM microspectroscopy. The basics of the underlying spectroscopic and microscopic methods are briefly explained in Sect. 1.2. Important experimental aspects inherent to XMCD-PEEM microspectroscopy are discussed in Sect. 1.3. Finally, in Sect. 1.4, two recent examples of application of XMCD-PEEM microspectroscopy are presented, in which the method has proven beneficial for the study of interesting issues in the field of ultrathin magnetic films.


Magnetization Direction Spin Moment Orbital Moment Spin Reorientation Magnetic Anisotropy Energy 


  1. 1.
    B.P. Tonner, D. Dunham, T. Droubay, J. Kikuma, J. Denlinger, E. Rotenberg, and A. Warwick, J. Electron Spectrosc. Relat. Phenom. 75, 309 (1995).CrossRefGoogle Scholar
  2. 2.
    L. Casalis, W. Jark, M. Kiskinova, D. Lonza, P. Melpignano, D. Morris, R. Rosei, A. Savoi, A. Abrami, C. Fava, P. Furlan, R. Pugliese, D. Vivoda, G. Sandrin, F.-Q. Wei, S. Contarini, L. DeAngelis, C. Gariazzo, P. Natelli, and G.R. Morrison, Rev. Sci. Instrum. 66, 4870 (1995).CrossRefGoogle Scholar
  3. 3.
    J. Voss, J. Electron Spectrosc. Relat. Phenom. 84, 29 (1997).CrossRefGoogle Scholar
  4. 4.
    M. Kiskinova, Surf. Rev. Lett. 7, 447 (2000).Google Scholar
  5. 5.
    L. Baumgarten, C.M. Schneider, H. Petersen, F. Schäfers, and J. Kirschner, Phys. Rev. Lett. 65, 492 (1990).CrossRefGoogle Scholar
  6. 6.
    Y. Kagoshima, T. Miyahara, M. Ando, J. Wang, and S. Aoki, J. Appl. Phys. 80, 3124 (1996).CrossRefGoogle Scholar
  7. 7.
    T. Warwick, K. Franck, J.B. Kortright, G. Meigs, M. Morenne, S. Myneni, E. Rotenberg, S. Seal, W.F. Steele, H. Ade, A. Garcia, S. Cerasari, J. Denlinger, S. Hayakawa, A.P. Hitchcock, T. Tyliszczak, J. Kikuma, E.G. Rightor, H.-J. Shin, and B.P. Tonner, Rev. Sci. Instrum. 69, 2964 (1998).CrossRefGoogle Scholar
  8. 8.
    O. Pietzsch, A. Kubetzka, M. Bode, and R. Wiesendanger, Phys. Rev. Lett. 84, 5212 (2000).CrossRefGoogle Scholar
  9. 9.
    M. Kleiber, M. Bode, R. Ravlic, and R. Wiesendanger, Phys. Rev. Lett. 85, 4606 (2000).CrossRefGoogle Scholar
  10. 10.
    A. Hubert and R. Schäfer: Magnetic Domains, Springer, Berlin (1998), and references therein.Google Scholar
  11. 11.
    D. Weller: Magneto-optical Kerr spectroscopy of transition metal alloy and compound films. In: H. Ebert and G. Schütz (ed.), Spin-Orbit-Influenced Spectroscopies of Magnetic Solids, Springer, Berlin (1996).Google Scholar
  12. 12.
    H. Ebert, Rep. Prog. Phys. 59, 1665 (1996).CrossRefGoogle Scholar
  13. 13.
    C.M. Schneider, Z. Celinski, M. Neuber, C. Wilde, M. Grunze, K. Meinel, and J. Kirschner, J. Phys.: Cond. Matt. 6, 1177 (1994).CrossRefGoogle Scholar
  14. 14.
    T. Kinoshita, K.G. Nath, Y. Haruyama, M. Watanabe, M. Yagi, S.-I. Kimura, and A. Fanelsa, J. Electron Spectrosc. Relat. Phenom. 92, 165 (1999).CrossRefGoogle Scholar
  15. 15.
    C.M. Schneider, K. Meinel, K. Holldack, H.P. Oepen, M. Grunze, and J. Kirschner: Magnetic spectro-microscopy using magneto-dichroic effects in photon-induced auger electron emission. In: B.T. Jonker et al. (ed.), Magnetic Ultrathin Films, Materials Research Society, Pittsburgh (1993).Google Scholar
  16. 16.
    C.M. Schneider, K. Holldack, M. Kinzler, M. Grunze, H.P. Oepen, F. Schäfers, H. Petersen, K. Meinel, and J. Kirschner, Appl. Phys. Lett. 63, 2432 (1993).CrossRefGoogle Scholar
  17. 17.
    P. Fischer, T. Eimüller, G. Schütz, P. Guttmann, G. Schmahl, K. Prueg, and G. Bayreuther, J. Phys. D: Appl. Phys. 31, 649 (1998).CrossRefGoogle Scholar
  18. 18.
    J. Stöhr, Y. Wu, M.G. Samant, B.B. Hermsmeier, G. Harp, S. Koranda, D. Dunham, and B.P. Tonner, Science 259, 658 (1993).Google Scholar
  19. 19.
    W. Swiech, G.H. Fecher, Ch. Ziethen, O. Schmidt, G. Schönhense, K. Grzelakowski, C.M. Schneider, R. Frömter, H.P. Oepen, and J. Kirschner, J. Electron Spectrosc. Relat. Phenom. 84, 171 (1997).CrossRefGoogle Scholar
  20. 20.
    F.U. Hillebrecht, D. Spanke, J. Dresselhaus, and V. Solinus, J. Electron Spectrosc. Relat. Phenom. 84, 189 (1997).CrossRefGoogle Scholar
  21. 21.
    W. Kuch, R. Frömter, J. Gilles, D. Hartmann, Ch. Ziethen, C.M. Schneider, G. Schönhense, W. Swiech, and J. Kirschner, Surf. Rev. Lett. 5, (1998).Google Scholar
  22. 22.
    J. Stöhr, H.A. Padmore, S. Anders, T. Stammler, and M.R. Scheinfein, Surf. Rev. Lett. 5, 1297 (1998).CrossRefGoogle Scholar
  23. 23.
    S. Anders, H.A. Padmore, R.M. Duarte, T. Renner, T. Stammler, A. Scholl, M.R. Scheinfein, J. Stöhr, L. Séve, and B. Sinkovic, Rev. Sci. Instrum. 70, 3973 (1999).CrossRefGoogle Scholar
  24. 24.
    T. Kachel, W. Gudat, C. Koziol, T. Schmidt, G. Lilienkamp, E. Bauer, and M. Altman, J. Appl. Phys. 81, 5025 (1997).CrossRefGoogle Scholar
  25. 25.
    E. Bauer, Rep. Prog. Phys. 57, 895 (1994).CrossRefGoogle Scholar
  26. 26.
    E. Bauer, Surf. Rev. Lett. 5, 1275 (1998).CrossRefGoogle Scholar
  27. 27.
    S. Imada, S. Suga, W. Kuch, and J. Kirschner, Surf. Rev. Lett. 9, 877 (2002).CrossRefGoogle Scholar
  28. 28.
    A. Scholl, J. Stöhr, J. Lüning, J.W. Seo, J. Fompeyrine, H. Siegwart, J.-P. Locquet, F. Nolting, S. Anders, E.E. Fullerton, M.R. Scheinfein, and H.A. Padmore, Science 287, 1014 (2000).CrossRefGoogle Scholar
  29. 29.
    F. Nolting, A. Scholl, J. Stöhr, J.W. Seo, J. Fompeyrine, H. Siegwart, J.-P. Locquet, S. Anders, J. Lüning, E.E. Fullerton, M.F. Toney, M.R. Scheinfein, and H.A. Padmore, Nature 405, 767 (2000).CrossRefGoogle Scholar
  30. 30.
    G. Schütz, W. Wagner, W. Wilhelm, P. Kienle, R. Zeller, R. Frahm, and G. Materlik, Phys. Rev. Lett. 58, 737 (1987).CrossRefGoogle Scholar
  31. 31.
    B.T. Thole, P. Carra, F. Sette, and G. van der Laan, 68, 1943 (1992).Google Scholar
  32. 32.
    P. Carra, B.T. Thole, M. Altarelli, and X. Wang, Phys. Rev. Lett. 70, 694 (1993).CrossRefGoogle Scholar
  33. 33.
    J. Stöhr, J. Electron Spectrosc. Relat. Phenom. 75, 253 (1995).CrossRefGoogle Scholar
  34. 34.
    Y.U. Idzerda, C.T. Chen, H.-J. Lin, H. Tjeng, and G. Meigs, Physica B 208–209, 746 (1995).CrossRefGoogle Scholar
  35. 35.
    H. Ebert: Circular magnetic X-ray dichroism in transition metal systems. In: H. Ebert and G. Schütz (ed.), Spin-Orbit-Influenced Spectroscopies of Magnetic Solids, Springer, Berlin (1996).Google Scholar
  36. 36.
    J. Stöhr and R. Nakajima, IBM J. Res. Develop. 42, 73 (1998).CrossRefGoogle Scholar
  37. 37.
    C.T. Chen, Y.U. Idzerda, H.-J. Lin, N.V. Smith, G. Meigs, E. Chaban, G.H. Ho, E. Pellegrin, and F. Sette, Phys. Rev. Lett. 75, 152 (1995).CrossRefGoogle Scholar
  38. 38.
    U. Fano, Phys. Rev. A 178, 131 (1969).CrossRefGoogle Scholar
  39. 39.
    D. Weller, J. Stöhr, R. Nakajima, A. Carl, M.G. Samant, C. Chappert, R. Mégy, P. Beauvillain, P. Veillet, and G.A. Held, Phys. Rev. Lett. 75, 3752 (1995).CrossRefGoogle Scholar
  40. 40.
    R. Wuand and A.J. Freeman, Phys. Rev. Lett. 73, 1994 (1994).CrossRefGoogle Scholar
  41. 41.
    W.L. O'Brien, B.P. Tonner, G.R. Harp, and S.S.P. Parkin, J. Appl. Phys. 76, 6462 (1994).CrossRefGoogle Scholar
  42. 42.
    D. Rioux, B. Allen, H. Höchst, D. Zhao, and D.L. Huber, Phys. Rev. B 56, 753 (1997).CrossRefGoogle Scholar
  43. 43.
    J. Schwitalla and H. Ebert, Phys. Rev. Lett. 80, 4586 (1998).CrossRefGoogle Scholar
  44. 44.
    J. Vogel and M. Sacchi, Phys. Rev. B 49, 3230 (1994).CrossRefGoogle Scholar
  45. 45.
    X. Le Cann, C. Boeglin, B. Carrière, and K. Hricovini, Phys. Rev. B 54, 373 (1996).CrossRefGoogle Scholar
  46. 46.
    J. Hunter Dunn, D. Arvanitis, and N. Mårtensson, Phys. Rev. B 54, R11157 (1996).CrossRefGoogle Scholar
  47. 47.
    G. Möllenstedt and F. Lenz: Electron emission microscopy. In: L. Marton (ed.), Advances in Electronics and Electron Physics, Academic Press, London (1963).Google Scholar
  48. 48.
    H. Bethke and M. Klaua, Ultramicroscopy 11, 207 (1983).CrossRefGoogle Scholar
  49. 49.
    W. Engel, M.E. Kordesch, H.H. Rotermund, S. Kubala, and A. von Oertzen, Ultramicroscopy 36, 148 (1991).CrossRefGoogle Scholar
  50. 50.
    M.E. Kordesch, W. Engel, G.J. Lapeyre, E. Zeitler, and A.M. Bradshaw, Appl. Phys. A 49, 399 (1989).CrossRefGoogle Scholar
  51. 51.
    M. Mundschau, M.E. Kordesch, B. Rausenberger, W. Engel, A.M. Bradshaw, and E. Zeitler, Surf. Sci. 227, 246 (1990).CrossRefGoogle Scholar
  52. 52.
    H.H. Rotermund, S. Nettesheim, A. von Oertzen, and G. Ertl, Surf. Sci. 275, L645 (1992).CrossRefGoogle Scholar
  53. 53.
    S. Nettesheim, A. von Oertzen, H.H. Rotermund, and G. Ertl, J. Chem. Phys. 98, 9977 (1993).CrossRefGoogle Scholar
  54. 54.
    W. Telieps and E. Bauer, Ultramicroscopy 17, 57 (1985).CrossRefGoogle Scholar
  55. 55.
    B.P. Tonner and G.R. Harp, Rev. Sci. Instrum. 59, 853 (1988).CrossRefGoogle Scholar
  56. 56.
    Ch. Ziethen, O. Schmidt, G.H. Fecher, C.M. Schneider, G. Schönhense, R. Frömter, M. Seider, K. Grzelakowski, M. Merkel, D. Funnemann, W. Swiech, H. Gundlach, and J. Kirschner, J. Electron Spectrosc. Relat. Phenom. 88–91, 983 (1998).CrossRefGoogle Scholar
  57. 57.
    G. De Stasio, L. Perfetti, B. Gilbert, O. Fauchox, M. Capozi, P. Perfetti, G. Margaritondo, and B.P. Tonner, Rev. Sci. Instrum. 70, 1740 (1999).CrossRefGoogle Scholar
  58. 58.
    E. Bauer, Appl. Surf. Sci. 92, 20 (1996).CrossRefGoogle Scholar
  59. 59.
    R. Fink, M.R. Weiss, E. Umbach, D. Preikszas, H. Rose, R. Spehr, P. Hartel, W. Engel, R. Degenhardt, R. Wichtendahl, H. Kuhlenbeck, W. Erlebach, K. Ihmann, R. Schlögl, H.-J. Freund, A.M. Bradshaw, G. Lilienkamp, T. Schmidt, E. Bauer, and G. Benner, J. Electron Spectrosc. Relat. Phenom. 84, 231 (1997).CrossRefGoogle Scholar
  60. 60.
    W. Kuch, J. Gilles, F. Offi, S.S. Kang, S. Imada, S. Suga, and J. Kirschner, Surf. Sci. 480, 153 (2001).CrossRefGoogle Scholar
  61. 61.
    J. Thomassen, F. May, B. Feldmann, M. Wuttig, and H. Ibach, Phys. Rev. Lett. 69, 3831 (1992).CrossRefGoogle Scholar
  62. 62.
    M.T. Kief and W.F. Egelhoff, Jr., Phys. Rev. B 47, 10785 (1993).CrossRefGoogle Scholar
  63. 63.
    K. Heinz, S. Müller, and P. Bayer, Surf. Sci. 337, 215 (1995).CrossRefGoogle Scholar
  64. 64.
    P. Bayer, S. Müller, P. Schmailzl, and K. Heinz, Phys. Rev. B 48, 17611 (1993).CrossRefGoogle Scholar
  65. 65.
    D. Li, M. Freitag, J. Pearson, Z.Q. Qiu, and S.D. Bader, Phys. Rev. Lett. 72, 3112 (1994).CrossRefGoogle Scholar
  66. 66.
    M. Straub, R. Vollmer, and J. Kirschner, Phys. Rev. Lett. 77, 743 (1996).CrossRefGoogle Scholar
  67. 67.
    M. Wuttig, B. Feldmann, J. Thomassen, F. May, H. Zillgen, A. Brodde, H. Hannemann, and H. Neddermayer, Surf. Sci. 291, 14 (1993).CrossRefGoogle Scholar
  68. 68.
    J. Giergiel, J. Kirschner, J. Landgraf, J. Shen, and J. Woltersdorf, Surf. Sci. 310, 1 (1994).CrossRefGoogle Scholar
  69. 69.
    J. Giergiel, J. Shen, J. Woltersdorf, A. Kirilyuk, and J. Kirschner, Phys. Rev. B 52, 8528 (1995).CrossRefGoogle Scholar
  70. 70.
    M.-T. Lin, J. Shen, W. Kuch, H. Jenniches, M. Klaua, C.M. Schneider, and J. Kirschner, Surf. Sci. 410, 290 (1998).CrossRefGoogle Scholar
  71. 71.
    S.S. Kang, W. Kuch, and J. Kirschner, Phys. Rev. B 63, 024401 (2001).CrossRefGoogle Scholar
  72. 72.
    V.L. Moruzzi, P.M. Marcus, K. Schwarz, and P. Mohn, Phys. Rev. B 34, 1784 (1986).CrossRefGoogle Scholar
  73. 73.
    V.L. Moruzzi, P.M. Marcus, and J. Kübler, Phys. Rev. B 39, 6957 (1989).CrossRefGoogle Scholar
  74. 74.
    P.M. Marcus, S.L. Qiu, and V.L. Moruzzi, J. Phys.: Cond. Matt. 11, 5709 (1999).CrossRefGoogle Scholar
  75. 75.
    E.J. Escorcia-Aparicio, R.K. Kawakami, and Z.Q. Qiu, Phys. Rev. B 54, 4155 (1996).CrossRefGoogle Scholar
  76. 76.
    R.K. Kawakami, E.J. Escorcia-Aparicio, Z.Q. Qiu, J. Appl. Phys. 79, 4532 (1996).CrossRefGoogle Scholar
  77. 77.
    W. Kuch and S.S.P. Parkin, Europhys. Lett. 37, 465 (1997).CrossRefGoogle Scholar
  78. 78.
    W. Kuch and S.S.P. Parkin, J. Magn. Magn. Mater. 184, 127 (1998).CrossRefGoogle Scholar
  79. 79.
    W. Kuch, J. Gilles, F. Offi, S.S. Kang, S. Imada, S. Suga, and J. Kirschner, J. Electron Spectrosc. Relat. Phenom. 109, 249 (2000).CrossRefGoogle Scholar
  80. 80.
    D. Schmitz, C. Charton, A. Scholl, C. Carbone, and W. Eberhardt, Phys. Rev. B 59, 4327 (1999).CrossRefGoogle Scholar
  81. 81.
    W.L. O'Brien and B.P. Tonner, Surf. Sci. 334, 10 (1995).CrossRefGoogle Scholar
  82. 82.
    W.L. O'Brien and B.P. Tonner, Phys. Rev. B 52, 15332 (1995).CrossRefGoogle Scholar
  83. 83.
    X. Gao, M. Salvietti, W. Kuch, C.M. Schneider, and J. Kirschner, Phys. Rev. B 58, 15426 (1998).CrossRefGoogle Scholar
  84. 84.
    R. Kläsges, D. Schmitz, C. Carbone, W. Eberhardt, and T. Kachel, Solid State Commun. 107, 13 (1998).CrossRefGoogle Scholar
  85. 85.
    R. Lorenz and J. Hafner, Phys. Rev. B 54, 15937 (1996).CrossRefGoogle Scholar
  86. 86.
    T. Asada and S. Blügel, Phys. Rev. Lett. 79, 507 (1997).CrossRefGoogle Scholar
  87. 87.
    E.G. Moroni, G. Kresse, and J. Hafner, J. Phys.: Cond. Matt. 11, L35 (1999).CrossRefGoogle Scholar
  88. 88.
    D. Spisak and J. Hafner, Phys. Rev. B 62, 9575 (2000).CrossRefGoogle Scholar
  89. 89.
    R. Lorenz and J. Hafner, Phys. Rev. B 58, 5197 (1998).CrossRefGoogle Scholar
  90. 90.
    J.C. Slonczewski, Phys. Rev. Lett. 67, 3172 (1991).CrossRefGoogle Scholar
  91. 91.
    J.C. Slonczewski, J. Magn. Magn. Mater. 150, 13 (1995).CrossRefGoogle Scholar
  92. 92.
    P. Bruno, Phys. Rev. B 39, 865 (1989).CrossRefGoogle Scholar
  93. 93.
    W. Kuch, J. Gilles, S.S. Kang, S. Imada, S. Suga, and J. Kirschner, Phys. Rev. B 62, 3824 (2000).CrossRefGoogle Scholar
  94. 94.
    P. Krams, F. Lauks, R.L. Stamps, B. Hillebrands, and G. Güntherodt, Phys. Rev. Lett. 69, 3674 (1992).CrossRefGoogle Scholar
  95. 95.
    M. Kowalewski, C.M. Schneider, and B. Heinrich, Phys. Rev. B 47, 8748 (1993).CrossRefGoogle Scholar
  96. 96.
    F. Huang, M.T. Kief, G.J. Mankey, and R.F. Willis, Phys. Rev. B 49, 3962 (1994).CrossRefGoogle Scholar
  97. 97.
    W.L. O'Brien and B.P. Tonner, Phys. Rev. B 49, 15370 (1994).CrossRefGoogle Scholar
  98. 98.
    B. Schulz and K. Baberschke, Phys. Rev. B 50, 13467 (1994).CrossRefGoogle Scholar
  99. 99.
    M. Farle, B. Mirwald-Schulz, A.N. Anisimov, W. Platow, and K. Baberschke, Phys. Rev. B 55, 3708 (1997).CrossRefGoogle Scholar
  100. 100.
    Y. Yafet and E.M. Gyorgy, Phys. Rev. B 38, 9145 (1988).CrossRefGoogle Scholar
  101. 101.
    M. Speckmann, H.P. Oepen, and H. Ibach, Phys. Rev. Lett. 75, 2035 (1995).CrossRefGoogle Scholar
  102. 102.
    F. Wilhelm, P. Poulopoulos, P. Srivastava, H. Wende, M. Farle, K. Baberschke, M. Angelakeris, N.K. Flevaris, W. Grange, J.-P. Kappler, G. Ghiringhelli, and N.B. Brookes, Phys. Rev. B 61, 8647 (2000).CrossRefGoogle Scholar
  103. 103.
    M.R. Weiss, R. Follath, K.J.S. Sawhney, F. Senf, J. Bahrdt, W. Frentrup, A. Gaupp, S. Sasaki, M. Scheer, H.-C. Mertins, D. Abramsohn, F. Schäfers, W. Kuch, and W. Mahler, Nucl. Instr. and Meth. A, 467–468, 449 (2001).CrossRefGoogle Scholar
  104. 104.
    D.W. Turner, I.R. Plummer, and H.Q. Porter, Rev. Sci. Instrum. 59, 45 (1988).CrossRefGoogle Scholar
  105. 105.
    G.K.L. Marx, V. Gerheim, and G. Schönhense, J. Electron Spectrosc. Relat. Phenom. 84, 251 (1997).CrossRefGoogle Scholar
  106. 106.
    Y. Sakai, M. Kato, S. Masuda, Y. Harada, and T. Ichinokawa, Surf. Rev. Lett. 5, 1199 (1998).CrossRefGoogle Scholar
  107. 107.
    T. Schmidt, S. Heun, J. Slezak, J. Diaz, K.C. Prince, G. Lilienkamp, and E. Bauer, Surf. Rev. Lett. 5, 1287 (1998).CrossRefGoogle Scholar
  108. 108.
    G. Rossi, G. Panaccione, F. Sirotti, and N.A. Cherepkov, Phys. Rev. B 55, 11483 (1997).CrossRefGoogle Scholar
  109. 109.
    C.S. Fadley: Recent developments in photoelectron diffraction. In: J. Kanamori and A. Kotani (ed.), Core-Level Spectroscopy in Condensed Systems, Springer, Berlin (1988).Google Scholar
  110. 110.
    C.S. Fadley, Surf. Sci. Rep. 19, 231 (1993).CrossRefGoogle Scholar
  111. 111.
    H. Daimon, T. Nakatani, S. Imada, S. Suga, Y. Kagoshima, and T. Miyahara, Rev. Sci. Instrum. 66, 1510 (1995).CrossRefGoogle Scholar
  112. 112.
    M. Bonfim, G. Ghiringhelli, F. Montaigne, S. Pizzini, N.B. Brookes, F. Petroff, J. Vogel, J. Camarero, and A. Fontaine, Phys. Rev. Lett. 86, 3646 (2001).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • W. Kuch

There are no affiliations available

Personalised recommendations